
From Perceptrons to Predictive
Maintenance:

An LLM Tutorial for PHM
Neil Eklund, Ph.D., FPHMS

Oak Grove Analytics, LLC

PHM24 Conference Tutorial

Who is this guy? Neil Eklund, Ph.D., FPHMS
• Principal, Oak Grove Analytics, LLC

• Principal Scientist, Xerox PARC
• Chief Data Scientist, Schlumberger
• Senior Data Scientist, GE Digital/GE Research

• 30 years of deep technical experience across
multiple industry segments – Aerospace, Energy,
Healthcare, Oil & Gas, Financial, and Rail

• External customers include DARPA, NASA,
Lockheed Martin, ExxonMobil, and Boeing

• Co-founder of the Prognostics & Health
Management Society

• Former adjunct faculty of Electrical Engineering
and Computer Science, Union Graduate College:
• System Modeling & Optimization
• Selected Topics in Data Mining

• 100+ publications, patents, and book chapters

• Predict failure 30 days in advance
• Structured and unstructured data
• Automated model updating
• $20MM+ annual return

• Predict success of next
downhole run

• Data transmission to the cloud
• First deployed deep learning

application for downhole tools
• $10MM+ annual return

• Multiobjective optimization of power plant
• Meet load constraint, maximize efficiency,

minimize pollution
• Automated learning as the plant operates
• $14MM+ annual return per 400MW plant

Deployed Applications

• Defense Advanced Research Projects
Agency (DARPA) project

• Fusion of data types (vibration, chips)
• Zero false alarms
• 5x increase in critical engine bearing spall

detection capability

• Fault detection for GEnx and GE90
aircraft engines

• First deployed analytics application
on GE Predix platform

• $10MM+ annual return

Drilling

Surface
Equipment

Production

• Predict failures a week in advance
• Wellsite data transmission to the

cloud
• Automated model updating
• $50MM+ annual return

Power Plant
Optimization &

Control

Military
Aviation

Commercial
Aviation

Tutorial Roadmap
§ Some awesome AI history
§ LSTM
§ Transformers
§ LLMs
§ Some sly subversive cultural references sprinkled throughout
§ Demos
§ Bloviating about LLMs

Some Background…

13.7 Billion years ago: the Big Bang

Tracing the Path from
Perceptron to LLM

Your brain is amazing!
§ Superior Nonlinear Control and Adaptability:

The human brain excels at controlling highly
nonlinear and dynamic systems with incredible
adaptability. It can seamlessly handle the
complexities of nonlinear dynamics, such as
those involved in balance and spatial
orientation, by continuously integrating
multisensory feedback to execute smooth and
coordinated motor actions.

§ Efficient Real-Time Processing and Parallelism:
The brain's ability to process vast amounts of
information in real-time while effectively
managing multiple control tasks simultaneously
is unparalleled. For example, during activities
like driving, the brain handles visual, auditory,
and tactile inputs while also planning
movements and anticipating future scenarios.

Why not try to emulate the brain to solve hard problems?

“A single isolated motor nerve cell of an ox spinal
cord” Popular Science Monthly volume 71, 1907.

Cellular Neuroscience in 60 Seconds
Neurons communicate through specialized structure
comprising:

§ dendrites, which receive incoming signals
§ the cell body, which processes these signals
§ and the axon, which transmits the electrical impulse

away from the neuron.
The axon terminals release neurotransmitters across
a synapse to pass the signal to the next neuron,
muscle, or gland, effectively forming a complex
network for rapid information processing and
response throughout the nervous system.
Excitatory connections increase the likelihood that
the receiving neuron will generate an action potential
(a nerve impulse). They are like an “on” switch,
promoting neural activity.
In contrast, inhibitory connections decrease the
likelihood that the receiving neuron will fire an action
potential. They act as an “off” switch, regulating and
restraining neural activity to prevent excessive firing.

Bulletin of Mathematical Biophysics, Vol. 5, 1943, p. 115-133

Warren McCulloch and
Walter Pitts published a
seminal paper proposing a
model of artificial neurons,
inspired by the structure
and function of the human
brain.

They built a simple neural
network that simulated the
operation of neurons using
threshold logic.

Biologically Inspired Artificial Neuron, 1943

First reprogrammable
electronic digital computer.
ENIAC was groundbreaking
for its use of vacuum tubes to
perform calculations, making it
significantly faster than
electromechanical machines of
the time. It occupied a large
room, consisting of
approximately 18,000 vacuum
tubes, 7,200 crystal diodes,
1,500 relays, and hundreds of
thousands of resistors,
capacitors, and inductors.
ENIAC marked a major step
forward in the development of
computing technology, laying
the groundwork for future
computers.

Electronic Numerical Integrator and Computer (ENIAC), 1946

In 1949, Donald Olding Hebb wrote The Organization of
Behaviour. He proposes neural flexibility and that neural
pathways are reinforced each time they are used.
1.Synaptic Plasticity: The theory highlights the brain's

ability to change and adapt by modifying the strength of
connections between neurons, a concept known as synaptic
plasticity.

2.Associative Learning: Hebbian learning explains how
associations between different stimuli or ideas can form.

3.Memory and Learning: Hebbian theory provides a
cellular and molecular basis for understanding how learning
and memory occur in the brain. It suggests that repeated
exposure to experiences can lead to the strengthening of
certain neural pathways, encoding memories.

4.Hebbian Modification: This concept refers to the
changes in the synaptic strength between two neurons
based on their activity patterns.

“cells that fire together, wire together”

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory.

Belmont Farley and Wesley Clark simulating learning and adaptive behavior in machines
using networks of artificial neurons. They explored how such networks could be used to
recognize patterns and learn from examples, concepts that are foundational to modern
machine learning and neural networks.
Although technology at the time was limited, their pioneering efforts helped lay the
groundwork for the machine learning breakthroughs that would follow in subsequent
decades, particularly with the advent of more powerful computers and sophisticated
algorithms.

Hebbian Network First Simulated “by digital computer”, 1954

Farley, B., & Clark, W. (1954). Simulation of self-organizing systems by digital computer. Transactions of the IRE Professional
Group on Information Theory, 4(4), 76–84.

The term Artificial Intelligence coined, 1956
The Dartmouth Summer Research Project on
Artificial Intelligence, held in 1956, is
considered the founding event of artificial
intelligence as a field of study.
§ Oliver Selfridge: AI pioneer known for work in

machine perception and pattern recognition.
§ Nathaniel Rochester: IBM computer scientist

instrumental in AI development and designer
of IBM's first scientific computer.

§ Marvin Minsky: Co-founder of the MIT AI Lab,
contributed to AI and robotics; author of "The
Society of Mind."

§ John McCarthy: Coined "artificial intelligence,"
developed LISP, and organized the founding AI
Dartmouth Conference.

§ Ray Solomonoff: Pioneer in AI and algorithmic
information theory; contributed to inductive
inference concepts.

§ Trenchard More: Contributed to early AI
development, theorem proving, and formal
systems at IBM.

§ Claude Shannon: Father of information theory,
introduced entropy in communication,
foundational in digital communication.

In the back row from left to right are Oliver Selfridge, Nathaniel
Rochester, Marvin Minsky, and John McCarthy. In front are Ray

Solomonoff, Trenchard More, and Claude Shannon.

Frank Rosenblatt developed a single-layer
neural network designed to mimic the way
the human brain processes visual
information. The perceptron model consists
of input nodes that feed data into a single
output node through weighted connections.
It learned to classify data through a process
of adjusting the weights based on errors in
its output, using an algorithm known as
supervised learning.
It is effective at solving linearly separable
problems…

The Perceptron, 1958

Rosenblatt, F. (1958). The perceptron: a probabilistic model for
information storage and organization in the brain. Psychological
review, 65(6), 386.

Rosenblatt’s Perceptron

Rosenblatt’s Perceptron

§The Perceptron was designed
to recognize patterns and had
the ability to learn through
training.

§Two-layer architecture: an
input layer and an output
layer directly connected by a
set of adjustable weights.

§Learning algorithm to adjust
these weights based on the
"error" between the desired
and actual outputs.

“Mark I” Perceptron

“Mark I” Perceptron

Originally
implemented as an
electronic device
with a camera to
capture visual input,
which it could
associate with
different categories.

Adaptive switching circuits are systems that can
adjust their parameters in response to changes in
the environment or input signals.
ADALINE (Adaptive Linear Neuron) is a simple
type of artificial neural network that consists of a
single linear neuron. ADALINE adjusts its weights
using a supervised learning process known as the
Least Mean Squares (LMS) algorithm, which
Widrow and Hoff developed. This algorithm
modifies the weights and biases in an adaptive
manner to minimize the error in signal processing
tasks.
This network was used to implement adaptive
filters, which are still actively used today. Their
research found applications in various domains
such as echo cancellation in telephony, seismic
signal processing, noise cancellation, and many
others where real-time adaptation to changing
conditions is crucial.

Adaptive Linear Neuron, 1959

Bernard Widrow and Marcian E. Hoff, "Adaptive switching circuits,"
1960 IRE WESCON Convention Record, New York: IRE, pp. 96-104

The Widrow-Hoff (or Delta) learning
rule, also known as the Least Mean
Squares (LMS) algorithm, is a
fundamental method for training linear
models and minimizing errors between
predicted and actual outputs.
This algorithm has laid the groundwork
for more complex learning techniques
like stochastic gradient descent, and it is
widely used in applications such as
adaptive filtering, noise cancellation, and
predictive modeling across various
fields.

Widrow-Hoff learning rule, 1962

Widrow, B., & Hoff, M. E. (1962). Associative storage and retrieval of digital information in networks of adaptive “neurons”. In Biological
Prototypes and Synthetic Systems: Volume 1 Proceedings of the Second Annual Bionics Symposium sponsored by Cornell University and the General
Electric Company, Advanced Electronics Center, held at Cornell University, August 30–September 1, 1961 (pp. 160-160). Springer US.

Error=Target Output−Predicted Output

The 1969 book, Perceptrons by Marvin
Minsky and Seymour Papert
demonstrated that Rosenblatt’s
perceptrons could not solve problems
that were not linearly separable, such
as the XOR problem, without
additional network layers.
At the time, multilayer perceptrons
(now known as multi-layer neural
networks) and effective training
algorithms like backpropagation had
not yet been developed or widely
understood, making these limitations
appear insurmountable.

Limitations of Perceptrons, 1969

Minsky, M., & Papert, S. (1969). An introduction to computational geometry. Cambridge tiass., HIT, 479(480), 104.

Rosenblatt’s Perceptron

The first AI Winter lasted from the mid-1970s to mid-1980s when interest in AI research diminished
significantly, along with a corresponding reduction in funding and perceived optimism about the field's
potential. This downturn was primarily due to unmet expectations and the realization that the ambitious
goals set in the early days of AI were far more complex and difficult to achieve than initially anticipated.
1. Limited Computational Power: The hardware available at the time was not powerful enough to

support the complex computations needed for AI, limiting the development and testing of AI
systems.

2. Research Limitations: Early AI research was heavily reliant on symbolic AI and heuristic
approaches, which struggled with real-world complexities and lacked the ability to learn from data
as effectively as modern machine learning techniques.

3. Evaluation Challenges: AI systems at the time were not robust and struggled outside controlled
environments, leading to disillusionment with their capabilities.

4. Funding Cuts and Criticism: Influential reports, such as the Lighthill Report, criticized the
progress and promise of AI research, leading to significant reductions in funding from governments
and private institutions. “In no part of the field have the discoveries made so far produced the major
impact that was then promised.”

The first AI Winter taught researchers the importance of setting realistic expectations, understanding
the technical limitations, and ensuring sustained funding and support for gradual but steady progress in
the field. Or did it?

First AI Winter: Mid-1970s to mid-1980s

Lighthill, J. (1973, April). Artificial intelligence: A general survey. In Artificial Intelligence: a paper symposium. London: Science Research Council.

The backpropagation algorithm was described
several times before they thought to apply it to
multilayer perceptrons.
• Seppo Linnainmaa (1970), Algoritmin

kumulatiivinen pyöristysvirhe yksittäisten
pyöristysvirheiden Taylor-kehitelmänä [The
representation of the cumulative rounding error
of an algorithm as a Taylor expansion of the local
rounding errors], Doctoral dissertation, Master’s
Thesis, University of Helsinki

• Paul Werbos (1974). Beyond regression: New tools
for prediction and analysis in the behavioral sciences.
PhD thesis, Committee on Applied Mathematics,
Harvard University, Cambridge, MA.

• Rumelhart, D. E., Hinton, G. E., & Williams, R. J.
(1986). Learning representations by back-
propagating errors. nature, 323(6088), 533-536.

Backpropagation, 1986 (but also 1970 and 1974)

• Chain Rule in Action: Backpropagation uses the
chain rule from calculus to pinpoint how much
each weight in the network contributes to the
overall error.

• Gradient Descent: Calculates the gradient of the
error with respect to each weight, providing the
direction to adjust the weights to reduce error.
This gradient guides the optimization algorithm.

• Backward Propagation: The process works by
propagating the error backwards through the
network, layer by layer, starting from the output.

• Weight Update: Using the calculated gradients,
the weights are adjusted in the direction that
minimizes the error. The learning rate controls
the size of the adjustment.

• Iterative Refinement: Backpropagation is
iterative, repeating the forward pass, backward
pass, and weight updates until the network
reaches the desired performance.

Backpropagation, 1986 (but also 1970 and 1974)

Backpropagation, 1986 (but also 1970 and 1974)

Image source: https://xnought.github.io/backprop-explainer/

Backprop Issues
Vanilla backpropagation, while foundational, have
limitations that can hinder its effectiveness in practice.
§ Vanishing Gradients: In deep networks, gradients can become

very small as they are propagated backward through layers with
activation functions like the sigmoid or tanh. This results in very slow
learning for the layers early in the network, as the updates to
weights become negligible.

§ Exploding Gradients: This is the opposite of the vanishing gradient
problem, where gradients can become excessively large. This often
leads to numerical instability and causes the model's parameters to
overflow, making learning unstable.

§ Gradient Descent Inefficiencies: Vanilla gradient descent may
converge very slowly, especially in non-convex optimization
landscapes common in deep learning, due to inefficient or
inappropriate learning rate choices.

§ Lack of Regularization: Vanilla backpropagation does not
inherently include mechanisms for regularization, making it prone to
overfitting if additional techniques such as dropout, weight decay, or
batch normalization are not used.

§ Computational Efficiency: Without optimizations or modifications,
vanilla gradient descent can be computationally expensive due to its
full pass over all data points in each iteration, especially with large
datasets.

§ Parameter Sensitivity: The algorithm's sensitivity to
hyperparameters, such as the learning rate, can significantly affect
the model's ability to learn relevant patterns efficiently.

Structure
Types of

Decision Regions
Exclusive-OR

Problem
Classes with

Meshed regions
Most General

Region Shapes

Single-Layer

Two-Layer

Three-Layer

Half Plane
Bounded By
Hyperplane

Convex Open
Or

Closed Regions

Arbitrary
(Complexity

Limited by No.
of Nodes)

A

AB

B

A

AB

B

A

AB

B

B
A

B
A

B
A

Different Non-Linearly Separable Problems

• Overhyped Expert Systems: These AI systems, while initially promising, couldn't
live up to expectations, proving brittle, hard to maintain, and limited in scope.
• Brittle: Unable to adapt to changing conditions or handle situations outside their narrow

domain.
• Difficult to Maintain: As expert systems grew more complex, updating and expanding their rule-

based systems became increasingly cumbersome.
• Limited in Scope: They struggled with tasks requiring common sense reasoning or complex

problem-solving.

• Rise of Personal Computers: Affordable PCs offered a more versatile and cost-
effective alternative to specialized AI hardware, undercutting the market.
• Funding Cuts: Disillusionment with AI's progress led to government and private

investors reducing funding for research.
• Lack of Real-World Use: AI struggled to demonstrate practical applications and

tangible benefits, further discouraging investment.
The second AI Winter taught researchers the importance of setting realistic
expectations, understanding the technical limitations, and ensuring sustained funding and
support for gradual but steady progress in the field. Or did it?

Second AI Winter: ~1987 to ~1993

• Increased Computing Power: Moore's Law continued to deliver exponential growth in
processing power, enabling more complex AI algorithms and larger datasets.

• Focus on Specific Problems: Researchers shifted from grand AI goals to tackling smaller,
more manageable problems with clear applications, leading to tangible successes.

• New Ties with Other Fields: AI began integrating with disciplines like statistics, economics,
and mathematics, leading to new approaches and hybrid solutions.

• Emphasis on Mathematical Rigor: A renewed focus on sound mathematical principles
and scientific standards improved the credibility and reliability of AI research.

• Emergence of Machine Learning: Advances in machine learning, particularly with neural
networks, started to yield promising results in areas like speech and image recognition.
• Shift in Focus: Instead of trying to create general-purpose AI, researchers started focusing on specific, well-

defined problems that machine learning could address. This led to more manageable goals and
demonstrable progress.

• New Algorithms and Techniques: Key advancements in machine learning algorithms, like backpropagation
for training neural networks, unlocked new possibilities for tackling complex tasks like pattern recognition
and prediction.

• Data-Driven Approach: Machine learning emphasized learning from data rather than relying solely on hand-
coded rules. This allowed AI systems to adapt and improve their performance as they were exposed to more
data.

• Early Successes: Machine learning started achieving notable success in areas like handwriting recognition,
spam filtering, and fraud detection

End of Second AI Winter (early 90s)

Questions?

Why is time interesting in an AI context?
Time series data are common and characterizing them with neural
networks offers powerful capabilities.
Prediction & Forecasting:

§ Financial Markets: Predicting stock prices, currency exchange rates, and market volatility.
§ Weather Forecasting: Forecasting temperature, rainfall, and extreme weather events.
§ Demand Forecasting: Predicting sales, customer traffic, and inventory needs for businesses.

Anomaly Detection:
§ Fraud Detection: Identifying unusual patterns in financial transactions or user behavior.
§ Manufacturing: Identifying defects in production lines.
§ Cybersecurity: Detecting intrusions and malicious activity in network traffic.

Classification & Pattern Recognition:
§ Speech Recognition: Converting spoken language to text.
§ Natural Language Processing: Understanding the meaning and sentiment of text.
§ Gesture Recognition: Interpreting human gestures in video or sensor data.

Control & Optimization:
§ Robotics: Controlling the movements and actions of robots in real-time.
§ Process Control: Optimizing industrial processes to improve efficiency and quality.
§ Autonomous Vehicles: Navigating and controlling self-driving cars.

PHM is all about time…

Camargos, M. O., Bessa, I., Junior, L. A., Coutinho, P. H. S., Leite, D. F., & Palhares, R. M. (2021). Evolving fuzzy system applied to battery charge capacity prediction for fault
prognostics. arXiv preprint arXiv:2102.09521.

Recurrent Neural Networks (RNNs)
RNNs are a type of artificial neural network designed for
sequential data.

§ They have connections that form directed cycles, creating an internal state that acts as
memory.

§ Unlike traditional neural networks, RNNs can utilize past information to influence future
predictions.

§ Commonly used for tasks like time-series prediction, natural language processing, and
speech recognition.

§ Backpropagation Through Time (BPTT):A training algorithm adapted to handle sequence
data, crucial for adjusting weights in RNNs.

§ Vanishing Gradient Problem:A challenge where gradients diminish, making learning long-
range dependencies difficult.

Applications:
§ Language modeling and text generation
§ Sentiment analysis
§ Machine translation
§ Predictive analytics in financial markets
§ Audio processing and music composition.

RNNs are a class of neural networks designed to process sequential data by maintaining a
form of memory through recurrent connections, allowing them to effectively handle tasks
where context and sequence order are crucial, such as language modeling and time-series
prediction.

Recurrent Neural Networks (RNNs)

From bottom to top: input state, hidden state, output state.
U, V, W are the weights of the network.

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

A one-unit RNN

RNNs & the Vanishing Gradient Problem
§ Gradients shrink exponentially

during BPTT, hindering learning
of long-term dependencies.

§ Occurs due to repeated
multiplication of small values in
the chain rule.

§ RNNs struggle to retain
information from earlier time
steps.

§ Affects tasks requiring long-
term context (e.g., natural
language understanding, speech
recognition).

Long Short Term Memory (LSTMs, 1997)
LSTMs are explicitly designed capture long-range dependencies more effectively than
traditional RNNs.

§ Cells: LSTM networks consist of units called cells, which include three gates: input, forget, and
output gates.
§ Input Gate: Determines the extent to which new information is added to the cell state.
§ Forget Gate: Decides what information is discarded from the cell state.
§ Output Gate: Controls the output and how much of the cell state affects the output.

§ Cell state is a key component that flows through the entire network, allowing information to be
retained over long periods.

§ The gating mechanisms rely on a sigmoid activation function to decide which information to
keep, update, or forget, achieving a balance between memory retention and contextual updating.

Advantages:
§ Capable of learning long-term dependencies and retaining information across extensive time

steps.
§ Useful in tasks where context over time is important, like language modeling, machine

translation, speech recognition, and time-series prediction.
Challenges:

§ Computationally intensive and require more resources than simple RNNs.
§ Tuning hyperparameters like learning rate, dropout rate, and number of hidden layers can be

complex.

Recall: the RNN
The repeating module
in a standard RNN
contains a single layer.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM repeating module

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The repeating module in an LSTM contains four interacting layers.

Cell state holds long-
term memories.

Forget Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The forget gate determines which information
from the previous cell state should be removed or
forgotten as the network processes new input.
Two inputs:

§ The previous hidden state ht-1 from the previous
time step.

§ The current input xt at the current time step.
The output of the sigmoid function is a vector
where each element is a value between 0 and 1.
These values represent the degree to which each
part of the cell state will be forgotten:

§ A value close to 0 means “forget this
information entirely.”

§ A value close to 1 means “keep this information
intact.”

The forget gate allows LSTMs to selectively clear
unneeded information while retaining important
context, addressing the issue of "forgetting" in
traditional RNNs over long sequences. This
mechanism is key to LSTMs' ability to model long-
range dependencies in sequential data.

Input Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The input gate controls the extent to which new
information from the current input is allowed to
alter the cell state.
Same two inputs as forget gate:

§ The previous hidden state ht-1 from the previous
time step.

§ The current input xt at the current time step.
The output of the sigmoid function is a vector
where each element is a value between 0 and 1. It
represents how much of each element from the
candidate cell state should be accepted into the
actual cell state:

§ The element-wise multiplication of it with ~Ct
scales the new candidate values, determining
their impact on the updated cell state.

The new cell state is formed by combining the
scaled candidate values from the input gate with
the existing modified cell state (controlled by the
forget gate). The input gate allows the LSTM to
incorporate relevant new information while
protecting the cell state from irrelevant data or
noise.

Output Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The output gate determines what
information will be transferred out of the
LSTM cell at each time step and into the
wider network where further processing
can occur—whether for prediction or as an
input to subsequent layers or timesteps.
The same two inputs:

§ The previous hidden state ht-1 from the
previous time step.

§ The current input xt at the current time
step.

The element-wise multiplication of the
output gate's activation ot with the
transformed cell state creates the current
hidden state ht, which also serves as the
output from the LSTM cell.
This gate effectively controls the balance
between maintaining memory and
producing relevant short-term output.

LSTM in PHM: Rotating Machinery
Zhao, R., Wang, J., Yan, R., & Mao, K. (2016, November). Machine health

monitoring with LSTM networks. In 2016 10th International Conference on
Sensing Technology (ICST) (pp. 1-6). IEEE.

Real CNC data

Some Background to
the Background

Word Embeddings, e.g., Word2Vec
A neural network-based technique for learning word embeddings,
representing words as dense vectors.

§ Converts words into continuous vector spaces based on their context
§ Skip-gram Model: Predicts surrounding words given a target word
§ CBOW (Continuous Bag of Words): Predicts a target word from surrounding

context
Key Features

§ Captures semantic relationships between words
§ Word vectors can perform arithmetic operations

(e.g., king - man + woman ≈ queen)
§ Highly efficient and scalable
§ Revolutionized how text data is processed in

machine learning
§ Paved the way for further advancements in word

embedding techniques, such as GloVe and BERT

Autoencoders
Autoencoders are neural networks trained to reconstruct their input data.
Imagine them as a bottleneck for information, forcing the network to learn
the most important features of the data.

§ Encoder: Compresses the input data into a lower-dimensional representation
called the "latent space" or "bottleneck."

§ Decoder: Reconstructs the original input data from the latent space
representation.

Applications:
§ Dimensionality Reduction: Similar to PCA, but with non-linear capabilities.
§ Feature Extraction: Learn relevant features from the data.
§ Anomaly Detection: Deviations in reconstruction error can highlight unusual data

points.
§ Denoising Data: Trained to reconstruct clean input from noisy versions.
§ Generative Modeling: Can generate new data similar to the training data by

manipulating the latent space.

Autoencoder

Encoder-Decoders
Encoder-Decoder is a more general framework where the goal isn’t
necessarily to reconstruct the input, but to transform it into a
different output. It still has two parts:

§ Encoder: Similar to autoencoders, it processes the input and creates a
compressed representation.

§ Decoder: This part takes the encoded representation and generates a new
output, which could be in a different format or modality than the input.

Encoder-Decoders learn a mapping from one domain to another.
§ e.g., machine translation, where the encoder processes a sentence in one

language and the decoder generates the translation in another language.

Encoder-Decoder
§ Input & output lengths can be

different

https://www.baeldung.com/cs/nlp-encoder-decoder-models

Bahdanau Attention: Helping Computers Focus (2016)
In machine translation, neural networks used an approach where the entire input
sequence was compressed into a single, fixed-length vector. This was a bottleneck,
especially for long sentences, as crucial information could get lost in the
compression.
Bahdanau attention allows networks to dynamically focus on different parts of the
input, leading to:

§ Significantly improved accuracy of tasks like machine translation, especially for longer
sentences.

§ By examining the “attention weights,” we can see which parts of the input the network
focused on, giving us insights into its decision-making process.

Imagine you're trying to translate a long sentence from English to French. Instead
of trying to cram the entire English sentence into your brain at once, you might
focus on a few words at a time, translate them, and then move on to the next few.
That's essentially what Bahdanau attention does for computers!
Game changer:

§ Overcame limitations of fixed-length vector encoding for long sequences.
§ Boosted performance in machine translation and other tasks.
§ Provided valuable insights into the model's decision-making process.

Bahdanau, D., Cho, K., & Bengio, Y. (2016). Neural machine translation by jointly learning to align and translate. arXiv. https://doi.org/10.48550/arXiv.1409.0473

Some Background to
the Background

Transformers
Aa transformer is a type of neural network architecture that has revolutionized how
computers process sequential data, like the words in a sentence or the notes in a musical
piece.

§ Transforms input sequences into output sequences: It takes a sequence of data (like words in a
sentence) and produces another sequence (like a translation of that sentence from one language
to another).

§ Unlike previous models that processed data step-by-step, transformers can analyze an entire
sequence at once, allowing them to understand the relationships between different parts of the
data. This is done through a mechanism called “attention.”

Key components:
§ The attention mechanism is the heart of a transformer. It allows the model to focus on different

parts of the input sequence when processing a specific element. Imagine it like reading a
sentence and paying attention to particular words that are most relevant to the word you're
currently reading.

§ Encoders and decoders: are the building blocks of a transformer. Encoders process the input
sequence, while decoders generate the output sequence.

§ Parallel processing: Transformers can process the entire input sequence in parallel, making them
much faster than previous models.

Transformers have achieved state-of-the-art results in various tasks, including:
§ Natural language processing: Machine translation, text summarization, question answering.
§ Computer vision: Image recognition, object detection.
§ Speech recognition: Converting spoken language to text.

Attention Is All You Need (2017) (1 of 2)

Attention Is All You Need was a seminal paper that revolutionized
NLP by introducing a more efficient and powerful architecture for
processing sequential data, paving the way for advancements in
language understanding and generation.

§ Introduced the Transformer, a new neural network architecture relying
solely on attention mechanisms, discarding recurrent and convolutional
layers.

§ Removed the inherent sequential nature of RNNs, allowing for greater
parallelization and faster training speeds.

§ Enabled better handling of long-range dependencies in a sequence through
self-attention.

Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems.

Attention Is All You Need (2017) (2 of 2)

§ Achieved superior performance in machine translation tasks compared to
existing models, including RNN and CNN-based architectures.

§ Allowed the model to focus on different parts of the input sequence
simultaneously by using multiple attention heads.

§ Introduced positional encodings, a method to incorporate positional
information of words in the sequence, which is crucial for understanding
word order.

§ The architectural basis for large language models (LLMs) that have
transformed natural language processing.

§ Broad Applicability: Extended beyond machine translation to other NLP
tasks, including text summarization, question answering, and sentiment
analysis.

Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems.

Transformers in PHM
Already seeing transformers used in PHM

§ Capable of handling sequential and
multivariate sensor data essential for
predictive maintenance.

§ Model complex relationships and
dependencies in machinery data for
accurate failure predictions.

§ Enhance the accuracy and reliability of
maintenance intelligence systems.

e.g.,
Ding, Y., & Jia, M. (2022). Convolutional

transformer: An enhanced attention
mechanism architecture for remaining useful
life estimation of bearings. IEEE Transactions on
Instrumentation and Measurement, 71, 1-10.

Results on PRONOSTIA data set.

The Transformer Architecture
§ Architecture diagram from Vaswani’s 2017

paper
§ Encoder on the left, decoder on the right
§ A transformer network implementation will

consist of multiple encoder and decoder
blocks stacked on top of each other, with the
output of one block being the input to the
next block.

Inputs & Embedding
Inputs
§ Whatever sequence you’re trying to train a

model on…
§ Time series sensor data
§ Audio
§ Video frames

§ Will (mostly) focus on text processing in
examples

Embedding
§ Recall embedding models from above

§ representation of words as vectors, where
semantically similar words are closer to each
other in some high-dimensional space

Positional Encoding
Positional encoding gives the transformer a sense of word
order, enabling it to understand the meaning of a sentence
based not just on the words themselves, but also on their
arrangement.
§ Crucial step that adds information about the position of words

in a sequence to the model's input.
§ Transformers process all words in a sentence at the same time,

which is highly efficient. However, this means they lack the
sequential information that RNNs inherently possess.

§ The meaning of a sentence can change drastically depending on
the order of words. Consider "The dog bit the man" versus "The
man bit the dog." Positional encoding helps the transformer
understand these differences.

How does positional encoding work?
§ Each position in the input sequence is assigned a unique vector

of values generated using sine and cosine functions with different
frequencies.

§ Allows the model to learn relative positions and distances between
words.

§ Allows the model to generalize to sequences longer than those
seen during training.

§ The positional encoding vectors are added to the word
embeddings before being fed into the transformer's attention
mechanism.

The Attention Mechanism
The attention mechanism in the encoder side of a transformer is called
self-attention. It allows the model to weigh the importance of different
words in the input sequence when encoding a specific word. Here's a
breakdown of how self-attention works in the encoder:

§ Think of it as the model figuring out which other words in the sentence are
most relevant to understanding the current word it's focusing on.

Creating Queries, Keys, and Values: For each word in the input sequence,
three vectors are created:

§ Query (Q): Represents the current word the model is focusing on.
§ Key (K): Represents all other words in the sequence.
§ Value (V): Holds the actual information (embedding) of each word.

Calculating Context:
§ The query vector of each word is compared to the key vectors of all other

words using a compatibility function (usually dot product). This produces
attention scores, indicating how much each word relates to the current
word.

§ The attention scores are normalized using a softmax function, ensuring they
sum up to 1 and represent probabilities.

§ The normalized attention scores are used to weight the value vectors of all
words. These weighted values are then summed up, producing a context
vector for the current word.

§ This context vector captures the relevant information from the entire input
sequence, weighted by their importance to the current word. This enriched
representation of the word is then passed on to the next layer of the
encoder.

The Attention Mechanism (cont)

The attention layer picks out the relevant words
and “highlights” them in the model, while
diminishing the irrelevant words, to create a rich
representation of text just as a human would.

§ Imagine you're reading a sentence. As you focus
on each word, your mind subconsciously considers
other words in the sentence to understand its full
meaning.

§ Self-attention in transformers does something
similar. It allows the model to weigh the
importance of different parts of the input when
encoding each word, capturing contextual
relationships and dependencies between words.

Benefits of self-attention in the encoder:
§ Captures long-range dependencies, in contrast to

RNNs, which struggle with long sequences
§ Attention scores for all words can be calculated

simultaneously, making the encoding process highly
efficient.

§ Attention scores provide insights into which
words the model is focusing on, offering some level
of interpretability.

Feed Forward
The feed-forward network (FFN) processes the output of the self-
attention layer and introducing non-linearity and complexity to the
model

§ It takes the context vector produced by the self-attention layer as input. This
vector represents a word enriched with contextual information from other
words in the sequence.

§ The context vector is passed through a series of fully connected layers with non-
linear activation functions that allow the model to learn complex relationships
and patterns in the data.

§ The output of the FFN is a new representation of the word, further refined and
transformed by the non-linear operations.

Why is the FFN important?
§ The self-attention mechanism is primarily linear. The FFN introduces non-

linearity, enabling the model to learn more complex functions and capture
intricate relationships between words.

§ The hidden layers in the FFN act as feature extractors, learning to identify salient
features and patterns in the input data.

§ By combining self-attention with the FFN, the transformer can create highly
expressive representations of words, capturing both contextual information and
complex non-linear relationships.

Think of the FFN as a “refining” step after the self-attention
mechanism. It takes the contextually enriched representation of a
word and further processes it, adding depth and complexity to the
model's understanding. This allows the transformer to learn more
nuanced and sophisticated relationships between words in a sentence

On the decoder side, the input is a time-shifted output.
§ e.g., if we’re training a translator for English to German, for training,

we need to give an English sentence along with its translated
German version for the model to learn. So, our English sentences
pass through encoder block, and German sentences pass through
the decoder block.

Decoder Output Embeddings:
§ Dynamic: Unlike the encoder's fixed embeddings, the decoder

creates embeddings on-the-fly for each word it predicts in the
output sequence.

§ The decoder generates the output sequence step-by-step. Each
new word's embedding is influenced by the embeddings of the
words generated before it. This is called "autoregressive"
generation.

§ These embeddings aren't about representing the input. They are the
decoder's guesses for the next word in the output.

Encoder embeddings encode meaning; decoder
embeddings create it.

Outputs & Output Embedding

Decoder Positional Encoding: It's All Relative
Decoders, like encoders, require positional information to correctly order the
sequence they generate word-by-word. While absolute positional encoding
(using fixed positions like 1st, 2nd, 3rd word) is commonly used – similar to
encoders – relative positional encoding is another important approach,
especially beneficial for generation tasks.

With relative encoding, the focus shifts to the distance or relationship between
words in the output sequence as it's created step-by-step. Knowing “this word
comes 3 positions after that one” becomes key information. This focus on
relative distance allows the decoder to be highly flexible with the length and
structure of the output, enabling it to generate sentences of varying lengths
more dynamically than relying solely on fixed position assignments.

Think of it like building with LEGOs:
§ Encoder: Looks at the complete instruction manual (the input sentence)

– often using absolute positions.
§ Decoder: Assembles the LEGO model brick-by-brick (word-by-word),

focusing not just on the step number, but also on how each piece
connects to those before it – like relative positions.

Some transformer models use absolute positional encoding in both encoder and
decoder (as in the original architecture), while others have adopted relative
positional encoding for improved flexibility and performance. The choice
depends on the specific model design and application.

Relative positional encoding can help the decoder maintain correct relationships
between words as it builds the output sequence, though both approaches are
used in practice.

The decoder uses multi-head attention in two distinct ways, each
serving a different purpose:

1. Masked Self-Attention: Focus on the Past
§ Like the encoder, the decoder uses self-attention to understand

relationships between words in the sequence. However, it wears a
"mask" to prevent it from "seeing" future words.

§ This is crucial because the decoder generates the output word-by-
word. The mask ensures each word is predicted based only on the
preceding context, not on words that haven't been generated yet.

2. Encoder-Decoder Attention: Bridging the Gap
§ This attention layer allows the decoder to “look at” the encoder's

output. It helps the decoder focus on the relevant parts of the input
while generating each word of the output.

§ Instead of treating the entire input equally, the decoder can pinpoint
the most useful information for each step of the output generation
process.

The decoder uses multi-head attention to both maintain the
sequential order of output generation (masked self-attention) and
connect to the encoded input (encoder-decoder attention). This
dual functionality is key to the decoder's ability to generate
coherent and meaningful sequences.

Decoder Multi-Head Attention: A Two-Pronged Approach

Just like in the encoder, the decoder's feed-forward network
consists of fully connected layers with non-linear activation
functions.

§ It takes the output of the decoder's multi-head attention (which
includes both masked self-attention and encoder-decoder
attention) and further processes it.

§ The FFN introduces non-linearity, allowing the decoder to capture
more intricate relationships between words and generate more
nuanced and expressive output.

Think of it as a sculptor refining a clay model:
§ Multi-head attention roughly shapes the clay, capturing the basic

form and relationships.
§ Feed-forward network adds detail, smooths out rough edges, and

refines the overall form to create a more polished and expressive
final product.

The decoder's FFN plays a crucial role in refining the
representations produced by the multi-head attention layers,
ultimately contributing to the generation of more
sophisticated and coherent output sequences.

Decoder FFN: Refining Meaning, One Word at a Time

The decoder's final layers (linear, softmax, and output
probabilities) are all about turning the decoder's internal
representations back into actual words in the output sequence.

§ Linear Layer acts like a translator, converting the decoder's final
representation (a vector) into a format that can be understood
in the context of your vocabulary. It maps the vector to a score
for each word in your vocabulary.

§ Softmax Layer takes those scores from the linear layer and
turns them into probabilities. It ensures that:

§ Each probability is between 0 and 1.
§ All probabilities for all the words in your vocabulary add up to

one

§ Output Probabilities represent the decoder’s “confidence” in
each word being the correct next word in the sequence. The
word with the highest probability is typically chosen as the
decoder's prediction.

These final layers bridge the gap between the decoder's internal
workings and the actual output text, allowing the model to
generate human-readable sequences.

Decoder: From Numbers to Words

Applying Transformers for PHM
e.g., for vibration data,
§ Preprocess as usual – cleaning, remove DC

component, normalization, [(optionally) feature
extraction]

§ Segment raw vibration signals into fixed-length pieces
called "tokens.”

§ Use a time-sliding window strategy to create
sequences of tokens for the Transformer input

§ Shape each data sample into blocks representing
sequences for tokenized inputs.

§ Apply labels (RUL, class) to each sequence, creating
the dataset for training

§ Embedding: Perform a linear projection for each
token, adding a trainable [class] token at the start of
sequences.

By combining these techniques, you can effectively
represent your numerical time series data within
the transformer architecture.

Advantages of Transformers for PHM
§ Global Contextual Awareness: Captures long-range dependencies across entire

sequences, which is critical for tracking complex degradation patterns in
equipment.

§ Multi-Modal Compatibility: Easily integrates with multiple data types (e.g.,
vibration, thermal, acoustic) in a single model, enhancing diagnostic capabilities.

§ Scalability: Highly scalable for large datasets and can leverage pre-trained models,
reducing the need for extensive labeled data.

§ Attention Mechanism: Provides interpretability by highlighting which parts of the
input sequence are most relevant for predictions, aiding explainability.

§ Adaptation: Efficiently updates with new data, enabling dynamic Remaining Useful
Life (RUL) predictions and real-time monitoring.
§ Incorporate new data and adjust its predictions dynamically.
§ Fine-tune with new incoming data without retraining the entire model, allowing the

system to adjust to changes in the equipment's operational environment or
degradation patterns.

§ With incremental updates, transformers support real-time fault detection and
anomaly detection by quickly adapting to changes in the equipment’s behavior.

Disadvantages of Transformers for PHM
§ High Computational Cost

§ Transformers require substantial computational resources, particularly for large datasets and long
sequences, which can limit real-time applications in resource-constrained environments.

§ Data-Hungry
§ Training transformers effectively requires large amounts of labeled data, which may be difficult to

obtain in PHM where failures are rare or unpredictable.
§ Complexity in Model Tuning

§ Transformers have many hyperparameters and require careful tuning, which can be challenging
and time-consuming for optimal performance.

§ Lack of Temporal Bias
§ Unlike traditional time-series models, transformers do not inherently model sequential order,

requiring additional mechanisms (like positional encoding) to handle time dependencies
effectively.

§ Limited Explainability
§ Despite attention mechanisms, transformers can be challenging to interpret fully, especially in

applications where understanding failure mechanisms is essential.
§ Overfitting Risk:

§ Transformers can overfit on small datasets, making it difficult to generalize in applications where
labeled data is limited.

Application Architectures
Transformers can be combined in various ways to tackle complex tasks.
Stacked Transformers:

§ Like building blocks, multiple transformers are stacked on top of each other.
§ The output of one transformer becomes the input of the next.
§ This allows for deeper processing and more complex reasoning.
§ e.g., Some language models use this to achieve better understanding of long texts.

Ensemble Transformers:
§ Multiple transformers are trained independently on the same (or different) data.
§ Their predictions are combined (e.g., by averaging) to produce a final output.
§ This can improve robustness and accuracy by leveraging the diverse strengths of each transformer.
§ E.g., Used in machine translation to get more reliable translations.

Hierarchical Transformers:
§ Transformers are arranged in a tree-like structure.
§ Different transformers specialize in different levels of granularity (e.g., sentence-level, paragraph-level, document-level).
§ This allows for efficient processing of hierarchical information.
§ E.g., Used in document summarization to capture the essence of long texts.

Hybrid Architectures:
§ Transformers are combined with other types of neural networks (e.g., convolutional neural networks, recurrent

neural networks).
§ This leverages the strengths of different architectures for specific tasks.
§ e.g., Combining transformers with CNNs for image captioning.

Scaling Up: From
Transformer to Large

Language Model

An LLM is Essentially a Scaled-up Transformer
To get from the concept of a transformer to a large language model (LLM), the path
involves:

§ Massive Data: LLMs are trained on truly massive datasets of text and code. This could include
books, articles, code repositories, and much of the internet. This vast data allows the model to
learn patterns, grammar, and even some facts about the world.

§ Huge Model Size: LLMs have a massive number of parameters (think billions or trillions). More
parameters generally mean a more capable model.
§ OpenAI's GPT-3 uses 175 billion parameters.
§ OpenAI’s o1-preview uses 2.8 trillion parameters (unconfirmed by OpenAI)

§ LLMs are often trained using a technique called “generative pre-training.” This means they are
trained to predict the next word in a sequence, which forces them to learn the underlying
structure of language.

§ Since LLMs can be computationally intensive, optimizations in serving the model (e.g.,
quantization, distillation) make them more practical for real-world applications by reducing the
computational load without sacrificing performance.

While pre-training gives LLMs a broad understanding of language, they can be further fine-
tuned for specific tasks like:

§ Writing stories, articles, or summaries.
§ Converting text between languages.
§ Providing answers to questions based on given information.
§ Writing code in various programming languages.

Multimodal LLMs
True to it’s name, a multimodal LLM can process and understand information
from multiple modalities – like text, images, audio, and video.

§ By combining information from different modalities, multimodal LLMs can build a richer and
more nuanced understanding of the world, much like we do.

§ They can analyze images, understand speech, generate text, and even create images or audio.
§ They can bridge the gap between different forms of communication. Imagine an AI that can

describe images to someone who is visually impaired, or translate spoken language into sign
language.

This enables applications like:
§ More intelligent and capable AI systems. By mimicking human perception, they can understand

and interact with the world in more meaningful ways.
§ Image captioning: Generating descriptive captions for images.
§ Visual question answering: Answering questions about images.
§ Text-to-image generation: Creating images from text descriptions.
§ Interactive storytelling: Generating stories that incorporate images and sound.
§ Searching not just with keywords, but with images or sounds. Control devices and applications

with natural language and gestures.

Building a Multimodal LLM
§ Images, text, and audio are fundamentally different kinds of data. An LLM trained on text can't inherently

understand images or sounds.
§ Integration: The key challenge is to find a way to represent these diverse data types in a way that a single

model can understand and process them together.
§ Need specialized encoders for each modality:

§ Text Encoder: A transformer-based LLM like those we discussed earlier.
§ Image Encoder: Often a Convolutional Neural Network (CNN) or a Vision Transformer (ViT) to extract features

and create embeddings from images.
§ Audio Encoder: Models like Whisper that can convert audio into a sequence of representations.

Creating a Shared Representation Space
§ The encoders need to translate their respective data types into a common “language” or representation

space that the model can understand. This often involves mapping the outputs of each encoder into a
shared embedding space.

§ A multimodal LLM needs a mechanism to fuse or combine the information from different modalities. This
might involve:

§ Simple Concatenation: Combining the embeddings from different modalities into a single input sequence.
§ Cross-Attention: Allowing the model to attend to information from different modalities, similar to how self-

attention works within a transformer.
§ Multimodal Training: The entire model is then trained on data that includes multiple modalities. For example, it

might be trained on image-caption pairs, audio recordings with transcripts, or video clips with descriptions.

Multimodal LLMs builds upon the foundation of transformers and LLMs by incorporating specialized
encoders for different modalities, creating a shared representation space, and training on multimodal
data. This allows these models to process and generate information from multiple sources, leading to a
deeper understanding of the world and exciting new applications.

Multimodal Transformer Systems (LLMs) for PHM
PHM relies on various types of data:

§ Sensor Data: Vibration, temperature, pressure, acoustic emissions, etc.
§ Inspection Data: Images, videos from visual inspections, X-rays, etc.
§ Maintenance Records: Textual descriptions of repairs, replacements, etc.
§ Operational Logs: Records of usage patterns, environmental conditions, etc.

Multimodal transformers can ingest and fuse these diverse data
sources, capturing complex relationships that might be missed by
traditional PHM methods.

Multimodal Transformer Systems (LLMs) for PHM (cont.)
Enhanced Feature Extraction

§ Automatic Feature Engineering: Transformer can automatically identify relevant features from raw sensor data, reducing the
need for manual feature engineering.

§ Cross-Modal Feature Learning: They can learn correlations between different modalities, such as linking patterns in sensor
data with visual anomalies in inspection images.

Improved Predictive Modeling
§ By combining information from multiple sources, multimodal transformers can create more accurate and robust predictive

models.
§ They can detect subtle anomalies across different modalities that might signal impending failures, enabling proactive

maintenance.

“Explainable” PHM
§ Multimodal transformer can potentially provide insights into the underlying causes of failures by analyzing the relationships

between different data sources.
§ They can generate human-readable explanations of their predictions, increasing trust and transparency in PHM systems.

Challenges and Considerations
§ Collecting and preparing diverse data for multimodal transformers can be challenging.
§ Training large multimodal models requires significant computational resources.
§ Integrating domain expertise into the development and deployment of multimodal transformers for PHM is essential.

Multimodal Transformers have the potential to significantly advance PHM by enabling more comprehensive data
analysis, improved prediction accuracy, and enhanced explainability. This could lead to more efficient maintenance,
reduced downtime, and improved safety across various industries.

From LLMs to Retrieval-Augmented Generation (RAG)
The Limitation of LLMs:

§ LLMs are trained on a fixed dataset, so their knowledge is limited to what they learned during training.
§ LLMs can sometimes generate incorrect or nonsensical information, especially when dealing with rare or

unseen concepts.

The Need for External Knowledge:
§ To overcome these limitations, we need a way to access and integrate external knowledge sources.
§ This is where RAG comes in!

How RAG Works:
§ Retrieve: Given a user query, RAG retrieves relevant information from external knowledge sources (e.g.,

databases, documents).
§ Augment: This retrieved information is used to augment the LLM's input, providing it with the context and

knowledge it needs to generate a more accurate and informative response.
§ Generate: The LLM then generates a response based on both the user query and the retrieved

knowledge.
Key Components of RAG:

§ A collection of documents or a database containing relevant information.
§ A retrieval model that can efficiently search the knowledge source and retrieve relevant documents.
§ A large language model that generates the final response.

RAG Pros & Cons
Benefits of RAG:

§ Up-to-date Information: Access to external knowledge sources allows RAG to
provide information that is more current than the LLM's training data.

§ Reduced Hallucination: Grounding the LLM's response in retrieved knowledge
helps to reduce the risk of generating incorrect or nonsensical information.

§ Improved Accuracy: RAG systems can achieve higher accuracy on tasks that
require factual knowledge or specific domain expertise.

Downsides of RAG
§ Complexity: RAG systems have more components than standalone LLMs, making

them more complex to build and maintain. This includes managing the knowledge
source, retrieval model, and the LLM itself.

§ Retrieving and processing information from external sources adds computational
overhead, which can increase latency and cost, especially with large knowledge
bases.

§ The effectiveness of RAG depends heavily on the quality of the retrieval model.
Inaccurate or irrelevant retrievals can lead to poor or misleading responses.

§ Keeping the knowledge source up-to-date and ensuring the retrieval model
remains effective requires ongoing maintenance and monitoring. Although easier
to maintain RAG than update an LLM

RAG in PHM

Lukens, S., McCabe, L. H., Gen, J., & Ali, A. (2024, November).
Large Language Model Agents as Prognostics and Health
Management Copilots. In Annual Conference of the PHM
Society (Vol. 16, No. 1).

Figure 1. Conceptual illustration of a PHM Copilot as part of a
comprehensive PHM system.Framework:

§Proposes integrating LLMs as in-the-loop
agents in PHM workflows.

§The LLM-based PHM Copilot includes data
processing, failure mode discovery, and
structured maintenance recommendations
triggered by PHM alerts.

Case Study:
§ Utilized historical PHM data from GE Vernova

for validation.
§ Found that integrating RAG significantly

improved recommendation accuracy and
relevance by drawing on similar past cases.
§ RAG-enhanced recommendations were more

likely to capture failure modes and did so in
fewer steps than the LLM-only approach.

§ SMEs evaluated the LLM agents' outputs, finding
the observation and failure mode extraction
agents generally accurate, though complex
cases required additional SME labeling.

§ The framework demonstrated potential for
effective troubleshooting, though improvements
in evaluator accuracy and retrieval diversity
were noted as areas for future work.

LLMs have value in PHM for data quality
improvement and supporting prescriptive
decision-making.

Demos!

Multimodal LLMs “describe this image”

Multimodal LLMs “describe this image”
This diagram represents a Predictive Maintenance (PdM) framework integrated with a Prognostics and Health
Management (PHM) system, known here as the PHM Copilot. It highlights the data flow and interaction between
various components involved in monitoring, diagnosing, and recommending maintenance actions for physical assets
in an industrial facility.

Key Components:
Data Sources:
Historical Case Database: Stores past cases for reference.

•Asset Condition Data: Collects real-time or periodic data on asset health.
•Maintenance Data: Documents maintenance history and procedures.
•Technical Manuals: Provides operational and troubleshooting guidance.

PHM Copilot:
Contains PHM modeling for Fault Detection, Diagnostics, and Prognostics.

•Generates an Alert when potential issues are detected based on the asset's condition.
•Passes information and data to a Recommender system for generating maintenance recommendations.

Recommender (PHM Copilot System):
Utilizes the data and insights from PHM modeling, historical cases, and manuals.

•Provides specific Recommendations with step-by-step actions (Step 1, Step 2, etc.).

Multimodal LLMs “describe this image”
M&D Center (Monitoring & Diagnostics Center):
Houses an Analyst responsible for receiving alerts and recommendations, assessing the situation, and coordinating actions
with maintenance professionals.

Industrial Facility with Physical Asset:
Maintenance and Repair (M&R) professionals receive tasks and troubleshoot identified faults.
Actions are initiated through a Work Management System and relayed to M&R professionals for execution.

Validation:
The validation component, possibly an AI or system check, ensures that the recommendations meet quality or reliability
standards before implementation.

Workflow Summary:
1. Data from historical cases, asset conditions, maintenance logs, and technical manuals feed into the PHM Copilot.
2. The PHM Copilot's models detect potential issues, generating an alert.
3. The Recommender processes data to provide actionable recommendations.
4. An analyst in the M&D Center evaluates the alert and recommendations, coordinating with M&R staff to address the fault.
5. Validated recommendations are passed to the Work Management System, triggering maintenance actions at the facility.

This system enhances proactive maintenance by leveraging historical data, real-time monitoring, and guided recommendations,
aiming to reduce asset downtime and extend equipment life.

Chat With Data

Chat With Docs

Unsupervised Clustering

Where is this going?

GenAI has passed the Peak of Inflated Expectations
By the end of 2024, value will be largely derived from projects based on
familiar AI techniques, either stand-alone or in combination with GenAI, that
have standardized processes to aid implementation. Rather than focusing
solely on GenAI, AI leaders should look to composite AI techniques that
combine approaches from innovations at all stages of the Hype Cycle.
However, GenAI still has potential to be a transformational technology with
profound business impacts on content discovery, creation, authenticity and
regulation, automation of human work, and customer and employee
experiences. Still, GenAI faces challenges, including ethical and societal
concerns, limited security best practices and nefarious uses like deep fakes
and disinformation.

https://www.gartner.com/en/articles/hype-cycle-for-artificial-intelligence

Gartner’s Take

My Take
§LLMs are a tool, like any other

§Very useful for certain applications
§Good to have multiple, interacting agents
§Don’t get bullied into applying it inappropriately

§LLM hallucinations are a major issue. The more you know
about a topic, the weirder the subtle errors seem.
§Transformers are very powerful

§Training data & Compute power represent major challenges
§GPUs are very expensive to rent or buy

Questions

