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Who is this guy? Neil Eklund, Ph.D., FPHMS
• Principal, Oak Grove Analytics, LLC

• Principal Scientist, Xerox PARC
• Chief Data Scientist, Schlumberger
• Senior Data Scientist, GE Digital/GE Research

• 30 years of deep technical experience across 
multiple industry segments – Aerospace, Energy, 
Healthcare, Oil & Gas, Financial, and Rail 

• External customers include DARPA, NASA, 
Lockheed Martin, ExxonMobil, and Boeing

• Co-founder of the Prognostics & Health 
Management Society

• Former adjunct faculty of Electrical Engineering 
and Computer Science, Union Graduate College: 
• System Modeling & Optimization 
• Selected Topics in Data Mining 

• 100+ publications, patents, and book chapters



• Predict failure 30 days in advance
• Structured and unstructured data
• Automated model updating
• $20MM+ annual return

• Predict success of next 
downhole run

• Data transmission to the cloud
• First deployed deep learning 

application for downhole tools
• $10MM+ annual return

• Multiobjective optimization of power plant 
• Meet load constraint, maximize efficiency, 

minimize pollution
• Automated learning as the plant operates
• $14MM+ annual return per 400MW plant

Deployed Applications

• Defense Advanced Research Projects 
Agency (DARPA) project

• Fusion of data types (vibration, chips)
• Zero false alarms
• 5x increase in critical engine bearing spall 

detection capability

• Fault detection for GEnx and GE90 
aircraft engines

• First deployed analytics application 
on GE Predix platform

• $10MM+ annual return

Drilling

Surface 
Equipment

Production

• Predict failures a week in advance
• Wellsite data transmission to the 

cloud
• Automated model updating
• $50MM+ annual return

Power Plant 
Optimization & 

Control

Military 
Aviation

Commercial 
Aviation



Tutorial Roadmap
§ Some awesome AI history
§ LSTM
§ Transformers
§ LLMs
§ Some sly subversive cultural references sprinkled throughout
§ Demos
§ Bloviating about LLMs



Some Background…



13.7 Billion years ago: the Big Bang



Tracing the Path from 
Perceptron to LLM



Your brain is amazing!
§ Superior Nonlinear Control and Adaptability: 

The human brain excels at controlling highly 
nonlinear and dynamic systems with incredible 
adaptability. It can seamlessly handle the 
complexities of nonlinear dynamics, such as 
those involved in balance and spatial 
orientation, by continuously integrating 
multisensory feedback to execute smooth and 
coordinated motor actions. 

§ Efficient Real-Time Processing and Parallelism: 
The brain's ability to process vast amounts of 
information in real-time while effectively 
managing multiple control tasks simultaneously 
is unparalleled. For example, during activities 
like driving, the brain handles visual, auditory, 
and tactile inputs while also planning 
movements and anticipating future scenarios. 

Why not try to emulate the brain to solve hard problems?



“A single isolated motor nerve cell of an ox spinal 
cord” Popular Science Monthly volume 71, 1907.

Cellular Neuroscience in 60 Seconds
Neurons communicate through specialized structure 
comprising:

§  dendrites, which receive incoming signals
§ the cell body, which processes these signals
§ and the axon, which transmits the electrical impulse 

away from the neuron.
The axon terminals release neurotransmitters across 
a synapse to pass the signal to the next neuron, 
muscle, or gland, effectively forming a complex 
network for rapid information processing and 
response throughout the nervous system.
Excitatory connections increase the likelihood that 
the receiving neuron will generate an action potential 
(a nerve impulse). They are like an “on” switch, 
promoting neural activity.
In contrast, inhibitory connections decrease the 
likelihood that the receiving neuron will fire an action 
potential. They act as an “off” switch, regulating and 
restraining neural activity to prevent excessive firing.





Bulletin of Mathematical Biophysics, Vol. 5, 1943, p. 115-133

Warren McCulloch and 
Walter Pitts published a 
seminal paper proposing a 
model of artificial neurons, 
inspired by the structure 
and function of the human 
brain.

They built a simple neural 
network that simulated the 
operation of neurons using 
threshold logic.

Biologically Inspired Artificial Neuron, 1943



First reprogrammable 
electronic digital computer. 
ENIAC was groundbreaking 
for its use of vacuum tubes to 
perform calculations, making it 
significantly faster than 
electromechanical machines of 
the time. It occupied a large 
room, consisting of 
approximately 18,000 vacuum 
tubes, 7,200 crystal diodes, 
1,500 relays, and hundreds of 
thousands of resistors, 
capacitors, and inductors. 
ENIAC marked a major step 
forward in the development of 
computing technology, laying 
the groundwork for future 
computers.

Electronic Numerical Integrator and Computer (ENIAC), 1946



In 1949, Donald Olding Hebb wrote The Organization of 
Behaviour. He proposes neural flexibility and that neural 
pathways are reinforced each time they are used. 
1.Synaptic Plasticity: The theory highlights the brain's 

ability to change and adapt by modifying the strength of 
connections between neurons, a concept known as synaptic 
plasticity.

2.Associative Learning: Hebbian learning explains how 
associations between different stimuli or ideas can form. 

3.Memory and Learning: Hebbian theory provides a 
cellular and molecular basis for understanding how learning 
and memory occur in the brain. It suggests that repeated 
exposure to experiences can lead to the strengthening of 
certain neural pathways, encoding memories.

4.Hebbian Modification: This concept refers to the 
changes in the synaptic strength between two neurons 
based on their activity patterns.

“cells that fire together, wire together”

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. 



Belmont Farley and Wesley Clark simulating learning and adaptive behavior in machines 
using networks of artificial neurons. They explored how such networks could be used to 
recognize patterns and learn from examples, concepts that are foundational to modern 
machine learning and neural networks.
Although technology at the time was limited, their pioneering efforts helped lay the 
groundwork for the machine learning breakthroughs that would follow in subsequent 
decades, particularly with the advent of more powerful computers and sophisticated 
algorithms.

Hebbian Network First Simulated “by digital computer”, 1954

Farley, B., & Clark, W. (1954). Simulation of self-organizing systems by digital computer. Transactions of the IRE Professional 
Group on Information Theory, 4(4), 76–84.



The term Artificial Intelligence coined, 1956
The Dartmouth Summer Research Project on 
Artificial Intelligence, held in 1956, is 
considered the founding event of artificial 
intelligence as a field of study. 
§ Oliver Selfridge: AI pioneer known for work in 

machine perception and pattern recognition.
§ Nathaniel Rochester: IBM computer scientist 

instrumental in AI development and designer 
of IBM's first scientific computer.

§ Marvin Minsky: Co-founder of the MIT AI Lab, 
contributed to AI and robotics; author of "The 
Society of Mind."

§ John McCarthy: Coined "artificial intelligence," 
developed LISP, and organized the founding AI 
Dartmouth Conference.

§ Ray Solomonoff: Pioneer in AI and algorithmic 
information theory; contributed to inductive 
inference concepts.

§ Trenchard More: Contributed to early AI 
development, theorem proving, and formal 
systems at IBM.

§ Claude Shannon: Father of information theory, 
introduced entropy in communication, 
foundational in digital communication.

In the back row from left to right are Oliver Selfridge, Nathaniel 
Rochester, Marvin Minsky, and John McCarthy. In front are Ray 

Solomonoff, Trenchard More, and Claude Shannon.



Frank Rosenblatt developed a single-layer 
neural network designed to mimic the way 
the human brain processes visual 
information. The perceptron model consists 
of input nodes that feed data into a single 
output node through weighted connections. 
It learned to classify data through a process 
of adjusting the weights based on errors in 
its output, using an algorithm known as 
supervised learning.
It is effective at solving linearly separable 
problems…

The Perceptron, 1958 

Rosenblatt, F. (1958). The perceptron: a probabilistic model for 
information storage and organization in the brain. Psychological 
review, 65(6), 386.



Rosenblatt’s Perceptron



Rosenblatt’s Perceptron



§The Perceptron was designed 
to recognize patterns and had 
the ability to learn through 
training. 

§Two-layer architecture: an 
input layer and an output 
layer directly connected by a 
set of adjustable weights. 

§Learning algorithm to adjust 
these weights based on the 
"error" between the desired 
and actual outputs. 

“Mark I” Perceptron



“Mark I” Perceptron

Originally 
implemented as an 
electronic device 
with a camera to 
capture visual input, 
which it could 
associate with 
different categories. 



Adaptive switching circuits are systems that can 
adjust their parameters in response to changes in 
the environment or input signals. 
ADALINE (Adaptive Linear Neuron) is a simple 
type of artificial neural network that consists of a 
single linear neuron. ADALINE adjusts its weights 
using a supervised learning process known as the 
Least Mean Squares (LMS) algorithm, which 
Widrow and Hoff developed. This algorithm 
modifies the weights and biases in an adaptive 
manner to minimize the error in signal processing 
tasks.
This network was used to implement adaptive 
filters, which are still actively used today. Their 
research found applications in various domains 
such as echo cancellation in telephony, seismic 
signal processing, noise cancellation, and many 
others where real-time adaptation to changing 
conditions is crucial. 

Adaptive Linear Neuron, 1959

Bernard Widrow and Marcian E. Hoff, "Adaptive switching circuits," 
1960 IRE WESCON Convention Record, New York: IRE, pp. 96-104



The Widrow-Hoff (or Delta) learning 
rule, also known as the Least Mean 
Squares (LMS) algorithm, is a 
fundamental method for training linear 
models and minimizing errors between 
predicted and actual outputs. 
This algorithm has laid the groundwork 
for more complex learning techniques 
like stochastic gradient descent, and it is 
widely used in applications such as 
adaptive filtering, noise cancellation, and 
predictive modeling across various 
fields. 

Widrow-Hoff learning rule, 1962

Widrow, B., & Hoff, M. E. (1962). Associative storage and retrieval of digital information in networks of adaptive “neurons”. In Biological 
Prototypes and Synthetic Systems: Volume 1 Proceedings of the Second Annual Bionics Symposium sponsored by Cornell University and the General 
Electric Company, Advanced Electronics Center, held at Cornell University, August 30–September 1, 1961 (pp. 160-160). Springer US.

Error=Target Output−Predicted Output



The 1969 book, Perceptrons by Marvin 
Minsky and Seymour Papert 
demonstrated that Rosenblatt’s 
perceptrons could not solve problems 
that were not linearly separable, such 
as the XOR problem, without 
additional network layers. 
At the time, multilayer perceptrons 
(now known as multi-layer neural 
networks) and effective training 
algorithms like backpropagation had 
not yet been developed or widely 
understood, making these limitations 
appear insurmountable.

Limitations of Perceptrons, 1969

Minsky, M., & Papert, S. (1969). An introduction to computational geometry. Cambridge tiass., HIT, 479(480), 104.



Rosenblatt’s Perceptron



The first AI Winter lasted from the mid-1970s to mid-1980s when interest in AI research diminished 
significantly, along with a corresponding reduction in funding and perceived optimism about the field's 
potential. This downturn was primarily due to unmet expectations and the realization that the ambitious 
goals set in the early days of AI were far more complex and difficult to achieve than initially anticipated.
1. Limited Computational Power: The hardware available at the time was not powerful enough to 

support the complex computations needed for AI, limiting the development and testing of AI 
systems.

2. Research Limitations: Early AI research was heavily reliant on symbolic AI and heuristic 
approaches, which struggled with real-world complexities and lacked the ability to learn from data 
as effectively as modern machine learning techniques.

3. Evaluation Challenges: AI systems at the time were not robust and struggled outside controlled 
environments, leading to disillusionment with their capabilities.

4. Funding Cuts and Criticism: Influential reports, such as the Lighthill Report, criticized the 
progress and promise of AI research, leading to significant reductions in funding from governments 
and private institutions. “In no part of the field have the discoveries made so far produced the major 
impact that was then promised.”

The first AI Winter taught researchers the importance of setting realistic expectations, understanding 
the technical limitations, and ensuring sustained funding and support for gradual but steady progress in 
the field. Or did it?

First AI Winter: Mid-1970s to mid-1980s

Lighthill, J. (1973, April). Artificial intelligence: A general survey. In Artificial Intelligence: a paper symposium. London: Science Research Council.



The backpropagation algorithm was described 
several times before they thought to apply it to 
multilayer perceptrons.  
• Seppo Linnainmaa (1970), Algoritmin 

kumulatiivinen pyöristysvirhe yksittäisten 
pyöristysvirheiden Taylor-kehitelmänä [The 
representation of the cumulative rounding error 
of an algorithm as a Taylor expansion of the local 
rounding errors], Doctoral dissertation, Master’s 
Thesis, University of Helsinki

• Paul Werbos (1974). Beyond regression: New tools 
for prediction and analysis in the behavioral sciences. 
PhD thesis, Committee on Applied Mathematics, 
Harvard University, Cambridge, MA.

• Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 
(1986). Learning representations by back-
propagating errors. nature, 323(6088), 533-536.

Backpropagation, 1986 (but also 1970 and 1974)



• Chain Rule in Action: Backpropagation uses the 
chain rule from calculus to pinpoint how much 
each weight in the network contributes to the 
overall error.

• Gradient Descent: Calculates the gradient of the 
error with respect to each weight, providing the 
direction to adjust the weights to reduce error. 
This gradient guides the optimization algorithm.

• Backward Propagation: The process works by 
propagating the error backwards through the 
network, layer by layer, starting from the output.

• Weight Update: Using the calculated gradients, 
the weights are adjusted in the direction that 
minimizes the error. The learning rate controls 
the size of the adjustment.

• Iterative Refinement: Backpropagation is 
iterative, repeating the forward pass, backward 
pass, and weight updates until the network 
reaches the desired performance.

Backpropagation, 1986 (but also 1970 and 1974)



Backpropagation, 1986 (but also 1970 and 1974)

Image source: https://xnought.github.io/backprop-explainer/



Backprop Issues
Vanilla backpropagation, while foundational, have 
limitations that can hinder its effectiveness in practice.
§ Vanishing Gradients: In deep networks, gradients can become 

very small as they are propagated backward through layers with 
activation functions like the sigmoid or tanh. This results in very slow 
learning for the layers early in the network, as the updates to 
weights become negligible.

§ Exploding Gradients: This is the opposite of the vanishing gradient 
problem, where gradients can become excessively large. This often 
leads to numerical instability and causes the model's parameters to 
overflow, making learning unstable.

§ Gradient Descent Inefficiencies: Vanilla gradient descent may 
converge very slowly, especially in non-convex optimization 
landscapes common in deep learning, due to inefficient or 
inappropriate learning rate choices.

§ Lack of Regularization: Vanilla backpropagation does not 
inherently include mechanisms for regularization, making it prone to 
overfitting if additional techniques such as dropout, weight decay, or 
batch normalization are not used.

§ Computational Efficiency: Without optimizations or modifications, 
vanilla gradient descent can be computationally expensive due to its 
full pass over all data points in each iteration, especially with large 
datasets.

§ Parameter Sensitivity: The algorithm's sensitivity to 
hyperparameters, such as the learning rate, can significantly affect 
the model's ability to learn relevant patterns efficiently.







Structure
Types of

Decision Regions
Exclusive-OR

Problem
Classes with

Meshed regions
Most General

Region Shapes

Single-Layer

Two-Layer

Three-Layer

Half Plane
Bounded By
Hyperplane

Convex Open
Or

Closed Regions

Arbitrary
(Complexity

Limited by No.
of Nodes)

A

AB

B

A

AB

B

A

AB

B

B
A

B
A

B
A

Different Non-Linearly Separable Problems



• Overhyped Expert Systems: These AI systems, while initially promising, couldn't 
live up to expectations, proving brittle, hard to maintain, and limited in scope.
• Brittle: Unable to adapt to changing conditions or handle situations outside their narrow 

domain.  
• Difficult to Maintain: As expert systems grew more complex, updating and expanding their rule-

based systems became increasingly cumbersome.  
• Limited in Scope: They struggled with tasks requiring common sense reasoning or complex 

problem-solving.  

• Rise of Personal Computers: Affordable PCs offered a more versatile and cost-
effective alternative to specialized AI hardware, undercutting the market.
• Funding Cuts: Disillusionment with AI's progress led to government and private 

investors reducing funding for research.
• Lack of Real-World Use: AI struggled to demonstrate practical applications and 

tangible benefits, further discouraging investment.
The second AI Winter taught researchers the importance of setting realistic 
expectations, understanding the technical limitations, and ensuring sustained funding and 
support for gradual but steady progress in the field. Or did it?

Second AI Winter: ~1987 to ~1993



• Increased Computing Power: Moore's Law continued to deliver exponential growth in 
processing power, enabling more complex AI algorithms and larger datasets.

• Focus on Specific Problems: Researchers shifted from grand AI goals to tackling smaller, 
more manageable problems with clear applications, leading to tangible successes.

• New Ties with Other Fields: AI began integrating with disciplines like statistics, economics, 
and mathematics, leading to new approaches and hybrid solutions.

• Emphasis on Mathematical Rigor: A renewed focus on sound mathematical principles 
and scientific standards improved the credibility and reliability of AI research.

• Emergence of Machine Learning: Advances in machine learning, particularly with neural 
networks, started to yield promising results in areas like speech and image recognition.
• Shift in Focus: Instead of trying to create general-purpose AI, researchers started focusing on specific, well-

defined problems that machine learning could address. This led to more manageable goals and 
demonstrable progress.

• New Algorithms and Techniques: Key advancements in machine learning algorithms, like backpropagation 
for training neural networks, unlocked new possibilities for tackling complex tasks like pattern recognition 
and prediction.

• Data-Driven Approach: Machine learning emphasized learning from data rather than relying solely on hand-
coded rules. This allowed AI systems to adapt and improve their performance as they were exposed to more 
data.

• Early Successes: Machine learning started achieving notable success in areas like handwriting recognition, 
spam filtering, and fraud detection

End of Second AI Winter (early 90s)



Questions?



Why is time interesting in an AI context?
Time series data are common and characterizing them with neural 
networks offers powerful capabilities. 
Prediction & Forecasting:

§ Financial Markets: Predicting stock prices, currency exchange rates, and market volatility.
§ Weather Forecasting: Forecasting temperature, rainfall, and extreme weather events.
§ Demand Forecasting: Predicting sales, customer traffic, and inventory needs for businesses.

Anomaly Detection:
§ Fraud Detection: Identifying unusual patterns in financial transactions or user behavior.
§ Manufacturing: Identifying defects in production lines.
§ Cybersecurity: Detecting intrusions and malicious activity in network traffic.

Classification & Pattern Recognition:
§ Speech Recognition: Converting spoken language to text.
§ Natural Language Processing: Understanding the meaning and sentiment of text.
§ Gesture Recognition: Interpreting human gestures in video or sensor data.

Control & Optimization:
§ Robotics: Controlling the movements and actions of robots in real-time.
§ Process Control: Optimizing industrial processes to improve efficiency and quality.
§ Autonomous Vehicles: Navigating and controlling self-driving cars.



PHM is all about time…

Camargos, M. O., Bessa, I., Junior, L. A., Coutinho, P. H. S., Leite, D. F., & Palhares, R. M. (2021). Evolving fuzzy system applied to battery charge capacity prediction for fault 
prognostics. arXiv preprint arXiv:2102.09521.



Recurrent Neural Networks (RNNs)
RNNs are a type of artificial neural network designed for 
sequential data.

§ They have connections that form directed cycles, creating an internal state that acts as 
memory.

§ Unlike traditional neural networks, RNNs can utilize past information to influence future 
predictions.

§ Commonly used for tasks like time-series prediction, natural language processing, and 
speech recognition.

§ Backpropagation Through Time (BPTT):A training algorithm adapted to handle sequence 
data, crucial for adjusting weights in RNNs.

§ Vanishing Gradient Problem:A challenge where gradients diminish, making learning long-
range dependencies difficult.

Applications:
§ Language modeling and text generation
§ Sentiment analysis
§ Machine translation
§ Predictive analytics in financial markets
§ Audio processing and music composition.



RNNs are a class of neural networks designed to process sequential data by maintaining a 
form of memory through recurrent connections, allowing them to effectively handle tasks 
where context and sequence order are crucial, such as language modeling and time-series 
prediction.

Recurrent Neural Networks (RNNs)



From bottom to top: input state, hidden state, output state. 
U, V, W are the weights of the network. 

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

A one-unit RNN



RNNs & the Vanishing Gradient Problem
§ Gradients shrink exponentially 

during BPTT, hindering learning 
of long-term dependencies.

§ Occurs due to repeated 
multiplication of small values in 
the chain rule.

§ RNNs struggle to retain 
information from earlier time 
steps.

§ Affects tasks requiring long-
term context (e.g., natural 
language understanding, speech 
recognition).



Long Short Term Memory (LSTMs, 1997)
LSTMs are explicitly designed capture long-range dependencies more effectively than 
traditional RNNs.

§ Cells: LSTM networks consist of units called cells, which include three gates: input, forget, and 
output gates.
§ Input Gate: Determines the extent to which new information is added to the cell state.
§ Forget Gate: Decides what information is discarded from the cell state.
§ Output Gate: Controls the output and how much of the cell state affects the output.

§ Cell state is a key component that flows through the entire network, allowing information to be 
retained over long periods.

§ The gating mechanisms rely on a sigmoid activation function to decide which information to 
keep, update, or forget, achieving a balance between memory retention and contextual updating.

Advantages:
§ Capable of learning long-term dependencies and retaining information across extensive time 

steps.
§ Useful in tasks where context over time is important, like language modeling, machine 

translation, speech recognition, and time-series prediction.
Challenges:

§ Computationally intensive and require more resources than simple RNNs.
§ Tuning hyperparameters like learning rate, dropout rate, and number of hidden layers can be 

complex.



Recall: the RNN
The repeating module 
in a standard RNN 
contains a single layer.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM repeating module 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The repeating module in an LSTM contains four interacting layers.

Cell state holds long-
term memories.



Forget Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The forget gate determines which information 
from the previous cell state should be removed or 
forgotten as the network processes new input.
Two inputs:

§ The previous hidden state ht-1 from the previous 
time step.

§ The current input xt at the current time step.
The output of the sigmoid function is a vector 
where each element is a value between 0 and 1. 
These values represent the degree to which each 
part of the cell state will be forgotten:

§ A value close to 0 means “forget this 
information entirely.”

§ A value close to 1 means “keep this information 
intact.”

The forget gate allows LSTMs to selectively clear 
unneeded information while retaining important 
context, addressing the issue of "forgetting" in 
traditional RNNs over long sequences. This 
mechanism is key to LSTMs' ability to model long-
range dependencies in sequential data. 



Input Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The input gate controls the extent to which new 
information from the current input is allowed to 
alter the cell state. 
Same two inputs as forget gate:

§ The previous hidden state ht-1 from the previous 
time step.

§ The current input xt at the current time step.
The output of the sigmoid function is a vector 
where each element is a value between 0 and 1. It 
represents how much of each element from the 
candidate cell state should be accepted into the 
actual cell state:

§ The element-wise multiplication of it with ~Ct 
scales the new candidate values, determining 
their impact on the updated cell state.

The new cell state is formed by combining the 
scaled candidate values from the input gate with 
the existing modified cell state (controlled by the 
forget gate). The input gate allows the LSTM to 
incorporate relevant new information while 
protecting the cell state from irrelevant data or 
noise. 



Output Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The output gate determines what 
information will be transferred out of the 
LSTM cell at each time step and into the 
wider network where further processing 
can occur—whether for prediction or as an 
input to subsequent layers or timesteps.
The same two inputs:

§ The previous hidden state ht-1 from the 
previous time step.

§ The current input xt at the current time 
step.

The element-wise multiplication of the 
output gate's activation ot with the 
transformed cell state creates the current 
hidden state ht, which also serves as the 
output from the LSTM cell.
This gate effectively controls the balance 
between maintaining memory and 
producing relevant short-term output.



LSTM in PHM: Rotating Machinery
Zhao, R., Wang, J., Yan, R., & Mao, K. (2016, November). Machine health 

monitoring with LSTM networks. In 2016 10th International Conference on 
Sensing Technology (ICST) (pp. 1-6). IEEE.

Real CNC data



Some Background to 
the Background



Word Embeddings, e.g., Word2Vec
A neural network-based technique for learning word embeddings, 
representing words as dense vectors. 

§ Converts words into continuous vector spaces based on their context
§ Skip-gram Model: Predicts surrounding words given a target word
§ CBOW (Continuous Bag of Words): Predicts a target word from surrounding 

context
Key Features

§ Captures semantic relationships between words
§ Word vectors can perform arithmetic operations 

(e.g., king - man + woman ≈ queen)
§ Highly efficient and scalable
§ Revolutionized how text data is processed in 

machine learning
§ Paved the way for further advancements in word 

embedding techniques, such as GloVe and BERT



Autoencoders
Autoencoders are neural networks trained to reconstruct their input data. 
Imagine them as a bottleneck for information, forcing the network to learn 
the most important features of the data.

§ Encoder: Compresses the input data into a lower-dimensional representation 
called the "latent space" or "bottleneck."

§ Decoder: Reconstructs the original input data from the latent space 
representation.

Applications:
§ Dimensionality Reduction: Similar to PCA, but with non-linear capabilities.
§ Feature Extraction: Learn relevant features from the data.
§ Anomaly Detection: Deviations in reconstruction error can highlight unusual data 

points.
§ Denoising Data: Trained to reconstruct clean input from noisy versions.
§ Generative Modeling: Can generate new data similar to the training data by 

manipulating the latent space.



Autoencoder



Encoder-Decoders
Encoder-Decoder is a more general framework where the goal isn’t 
necessarily to reconstruct the input, but to transform it into a 
different output. It still has two parts:

§ Encoder: Similar to autoencoders, it processes the input and creates a 
compressed representation.

§ Decoder: This part takes the encoded representation and generates a new 
output, which could be in a different format or modality than the input.

Encoder-Decoders learn a mapping from one domain to another.
§ e.g., machine translation, where the encoder processes a sentence in one 

language and the decoder generates the translation in another language.



Encoder-Decoder
§ Input & output lengths can be 

different

https://www.baeldung.com/cs/nlp-encoder-decoder-models



Bahdanau Attention: Helping Computers Focus (2016)
In machine translation, neural networks used an approach where the entire input 
sequence was compressed into a single, fixed-length vector. This was a bottleneck, 
especially for long sentences, as crucial information could get lost in the 
compression. 
Bahdanau attention allows networks to dynamically focus on different parts of the 
input, leading to:  

§ Significantly improved accuracy of tasks like machine translation, especially for longer 
sentences.  

§ By examining the “attention weights,” we can see which parts of the input the network 
focused on, giving us insights into its decision-making process.

Imagine you're trying to translate a long sentence from English to French.  Instead 
of trying to cram the entire English sentence into your brain at once, you might 
focus on a few words at a time, translate them, and then move on to the next few. 
That's essentially what Bahdanau attention does for computers!
Game changer:

§ Overcame limitations of fixed-length vector encoding for long sequences.
§ Boosted performance in machine translation and other tasks.
§ Provided valuable insights into the model's decision-making process.

Bahdanau, D., Cho, K., & Bengio, Y. (2016). Neural machine translation by jointly learning to align and translate. arXiv. https://doi.org/10.48550/arXiv.1409.0473



Some Background to 
the Background



Transformers
Aa transformer is a type of neural network architecture that has revolutionized how 
computers process sequential data, like the words in a sentence or the notes in a musical 
piece.  

§ Transforms input sequences into output sequences: It takes a sequence of data (like words in a 
sentence) and produces another sequence (like a translation of that sentence from one language 
to another).  

§ Unlike previous models that processed data step-by-step, transformers can analyze an entire 
sequence at once, allowing them to understand the relationships between different parts of the 
data. This is done through a mechanism called “attention.”  

Key components:
§ The attention mechanism is the heart of a transformer. It allows the model to focus on different 

parts of the input sequence when processing a specific element. Imagine it like reading a 
sentence and paying attention to particular words that are most relevant to the word you're 
currently reading.  

§ Encoders and decoders: are the building blocks of a transformer. Encoders process the input 
sequence, while decoders generate the output sequence.  

§ Parallel processing: Transformers can process the entire input sequence in parallel, making them 
much faster than previous models.  

Transformers have achieved state-of-the-art results in various tasks, including:
§ Natural language processing: Machine translation, text summarization, question answering.  
§ Computer vision: Image recognition, object detection.  
§ Speech recognition: Converting spoken language to text.  



Attention Is All You Need (2017) (1 of 2)

Attention Is All You Need was a seminal paper that revolutionized 
NLP by introducing a more efficient and powerful architecture for 
processing sequential data, paving the way for advancements in 
language understanding and generation.

§ Introduced the Transformer,  a new neural network architecture relying 
solely on attention mechanisms, discarding recurrent and convolutional 
layers.

§ Removed the inherent sequential nature of RNNs, allowing for greater 
parallelization and faster training speeds.

§ Enabled better handling of long-range dependencies in a sequence through 
self-attention.

Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems.



Attention Is All You Need (2017) (2 of 2)

§ Achieved superior performance in machine translation tasks compared to 
existing models, including RNN and CNN-based architectures.

§ Allowed the model to focus on different parts of the input sequence 
simultaneously by using multiple attention heads.

§ Introduced positional encodings, a method to incorporate positional 
information of words in the sequence, which is crucial for understanding 
word order.

§ The architectural basis for large language models (LLMs) that have 
transformed natural language processing.

§ Broad Applicability: Extended beyond machine translation to other NLP 
tasks, including text summarization, question answering, and sentiment 
analysis.

Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems.



Transformers in PHM
Already seeing transformers used in PHM

§ Capable of handling sequential and 
multivariate sensor data essential for 
predictive maintenance.

§ Model complex relationships and 
dependencies in machinery data for 
accurate failure predictions.

§ Enhance the accuracy and reliability of 
maintenance intelligence systems.

e.g., 
Ding, Y., & Jia, M. (2022). Convolutional 

transformer: An enhanced attention 
mechanism architecture for remaining useful 
life estimation of bearings. IEEE Transactions on 
Instrumentation and Measurement, 71, 1-10.

Results on PRONOSTIA data set.



The Transformer Architecture
§ Architecture diagram from Vaswani’s 2017 

paper
§ Encoder on the left, decoder on the right
§ A transformer network implementation will 

consist of multiple encoder and decoder 
blocks stacked on top of each other, with the 
output of one block being the input to the 
next block.



Inputs & Embedding
Inputs
§ Whatever sequence you’re trying to train a 

model on…
§ Time series sensor data
§ Audio
§ Video frames

§ Will (mostly) focus on text processing in 
examples

Embedding
§ Recall embedding models from above

§ representation of words as vectors, where 
semantically similar words are closer to each 
other in some high-dimensional space



Positional Encoding
Positional encoding gives the transformer a sense of word 
order, enabling it to understand the meaning of a sentence 
based not just on the words themselves, but also on their 
arrangement. 
§ Crucial step that adds information about the position of words 

in a sequence to the model's input. 
§ Transformers process all words in a sentence at the same time, 

which is highly efficient. However, this means they lack the 
sequential information that RNNs inherently possess.  

§ The meaning of a sentence can change drastically depending on 
the order of words. Consider "The dog bit the man" versus "The 
man bit the dog." Positional encoding helps the transformer 
understand these differences.

How does positional encoding work?
§ Each position in the input sequence is assigned a unique vector 

of values generated using sine and cosine functions with different 
frequencies. 

§ Allows the model to learn relative positions and distances between 
words.  

§ Allows the model to generalize to sequences longer than those 
seen during training. 

§ The positional encoding vectors are added to the word 
embeddings before being fed into the transformer's attention 
mechanism.  



The Attention Mechanism
The attention mechanism in the encoder side of a transformer is called 
self-attention. It allows the model to weigh the importance of different 
words in the input sequence when encoding a specific word. Here's a 
breakdown of how self-attention works in the encoder:

§ Think of it as the model figuring out which other words in the sentence are 
most relevant to understanding the current word it's focusing on.  

Creating Queries, Keys, and Values:  For each word in the input sequence, 
three vectors are created:

§ Query (Q): Represents the current word the model is focusing on.  
§ Key (K): Represents all other words in the sequence.  
§ Value (V): Holds the actual information (embedding) of each word.  

Calculating Context:
§ The query vector of each word is compared to the key vectors of all other 

words using a compatibility function (usually dot product). This produces 
attention scores, indicating how much each word relates to the current 
word.  

§ The attention scores are normalized using a softmax function, ensuring they 
sum up to 1 and represent probabilities.  

§ The normalized attention scores are used to weight the value vectors of all 
words. These weighted values are then summed up, producing a context 
vector for the current word.  

§ This context vector captures the relevant information from the entire input 
sequence, weighted by their importance to the current word. This enriched 
representation of the word is then passed on to the next layer of the 
encoder.  



The Attention Mechanism (cont)

The attention layer picks out the relevant words 
and “highlights” them in the model, while 
diminishing the irrelevant words, to create a rich 
representation of text just as a human would.

§ Imagine you're reading a sentence.  As you focus 
on each word, your mind subconsciously considers 
other words in the sentence to understand its full 
meaning. 

§ Self-attention in transformers does something 
similar. It allows the model to weigh the 
importance of different parts of the input when 
encoding each word, capturing contextual 
relationships and dependencies between words.  

Benefits of self-attention in the encoder:
§ Captures long-range dependencies, in contrast to 

RNNs, which struggle with long sequences
§ Attention scores for all words can be calculated 

simultaneously, making the encoding process highly 
efficient.  

§ Attention scores provide insights into which 
words the model is focusing on, offering some level 
of interpretability.



Feed Forward
The feed-forward network (FFN) processes the output of the self-
attention layer and introducing non-linearity and complexity to the 
model

§ It takes the context vector produced by the self-attention layer as input. This 
vector represents a word enriched with contextual information from other 
words in the sequence.  

§ The context vector is passed through a series of fully connected layers with non-
linear activation functions that allow the model to learn complex relationships 
and patterns in the data.

§ The output of the FFN is a new representation of the word, further refined and 
transformed by the non-linear operations. 

Why is the FFN important?
§ The self-attention mechanism is primarily linear. The FFN introduces non-

linearity, enabling the model to learn more complex functions and capture 
intricate relationships between words.  

§ The hidden layers in the FFN act as feature extractors, learning to identify salient 
features and patterns in the input data.

§ By combining self-attention with the FFN, the transformer can create highly 
expressive representations of words, capturing both contextual information and 
complex non-linear relationships.  

Think of the FFN as a “refining” step after the self-attention 
mechanism. It takes the contextually enriched representation of a 
word and further processes it, adding depth and complexity to the 
model's understanding. This allows the transformer to learn more 
nuanced and sophisticated relationships between words in a sentence



On the decoder side, the input is a time-shifted output. 
§ e.g., if we’re training a translator for English to German, for training, 

we need to give an English sentence along with its translated 
German version for the model to learn. So, our English sentences 
pass through encoder block, and German sentences pass through 
the decoder block.

Decoder Output Embeddings:
§ Dynamic: Unlike the encoder's fixed embeddings, the decoder 

creates embeddings on-the-fly for each word it predicts in the 
output sequence.

§ The decoder generates the output sequence step-by-step. Each 
new word's embedding is influenced by the embeddings of the 
words generated before it. This is called "autoregressive" 
generation.

§ These embeddings aren't about representing the input. They are the 
decoder's guesses for the next word in the output.

Encoder embeddings encode meaning; decoder 
embeddings create it.

Outputs & Output Embedding



Decoder Positional Encoding: It's All Relative
Decoders, like encoders, require positional information to correctly order the 
sequence they generate word-by-word. While absolute positional encoding 
(using fixed positions like 1st, 2nd, 3rd word) is commonly used – similar to 
encoders – relative positional encoding is another important approach, 
especially beneficial for generation tasks.

With relative encoding, the focus shifts to the distance or relationship between 
words in the output sequence as it's created step-by-step. Knowing “this word 
comes 3 positions after that one” becomes key information. This focus on 
relative distance allows the decoder to be highly flexible with the length and 
structure of the output, enabling it to generate sentences of varying lengths 
more dynamically than relying solely on fixed position assignments.

Think of it like building with LEGOs:
§ Encoder: Looks at the complete instruction manual (the input sentence) 

– often using absolute positions.
§ Decoder: Assembles the LEGO model brick-by-brick (word-by-word), 

focusing not just on the step number, but also on how each piece 
connects to those before it – like relative positions. 

Some transformer models use absolute positional encoding in both encoder and 
decoder (as in the original architecture), while others have adopted relative 
positional encoding for improved flexibility and performance. The choice 
depends on the specific model design and application.

Relative positional encoding can help the decoder maintain correct relationships 
between words as it builds the output sequence, though both approaches are 
used in practice.



The decoder uses multi-head attention in two distinct ways, each 
serving a different purpose:

1. Masked Self-Attention: Focus on the Past
§ Like the encoder, the decoder uses self-attention to understand 

relationships between words in the sequence. However, it wears a 
"mask" to prevent it from "seeing" future words.

§ This is crucial because the decoder generates the output word-by-
word. The mask ensures each word is predicted based only on the 
preceding context, not on words that haven't been generated yet.

2. Encoder-Decoder Attention:  Bridging the Gap
§ This attention layer allows the decoder to “look at” the encoder's 

output. It helps the decoder focus on the relevant parts of the input 
while generating each word of the output.

§ Instead of treating the entire input equally, the decoder can pinpoint 
the most useful information for each step of the output generation 
process.

The decoder uses multi-head attention to both maintain the 
sequential order of output generation (masked self-attention) and 
connect to the encoded input (encoder-decoder attention). This 
dual functionality is key to the decoder's ability to generate 
coherent and meaningful sequences.

Decoder Multi-Head Attention: A Two-Pronged Approach



Just like in the encoder, the decoder's feed-forward network  
consists of fully connected layers with non-linear activation 
functions.

§ It takes the output of the decoder's multi-head attention (which 
includes both masked self-attention and encoder-decoder 
attention) and further processes it.

§ The FFN introduces non-linearity, allowing the decoder to capture 
more intricate relationships between words and generate more 
nuanced and expressive output.

Think of it as a sculptor refining a clay model:
§ Multi-head attention roughly shapes the clay, capturing the basic 

form and relationships.
§ Feed-forward network adds detail, smooths out rough edges, and 

refines the overall form to create a more polished and expressive 
final product.

The decoder's FFN plays a crucial role in refining the 
representations produced by the multi-head attention layers, 
ultimately contributing to the generation of more 
sophisticated and coherent output sequences.

Decoder FFN: Refining Meaning, One Word at a Time



The decoder's final layers (linear, softmax, and output 
probabilities) are all about turning the decoder's internal 
representations back into actual words in the output sequence. 

§ Linear Layer acts like a translator, converting the decoder's final 
representation (a vector) into a format that can be understood 
in the context of your vocabulary. It maps the vector to a score 
for each word in your vocabulary.

§ Softmax Layer takes those scores from the linear layer and 
turns them into probabilities. It ensures that:

§ Each probability is between 0 and 1.
§ All probabilities for all the words in your vocabulary add up to 

one

§ Output Probabilities represent the decoder’s “confidence” in 
each word being the correct next word in the sequence. The 
word with the highest probability is typically chosen as the 
decoder's prediction.

These final layers bridge the gap between the decoder's internal 
workings and the actual output text, allowing the model to 
generate human-readable sequences.

Decoder: From Numbers to Words



Applying Transformers for PHM
e.g., for vibration data,
§ Preprocess as usual – cleaning, remove DC 

component, normalization, [(optionally) feature 
extraction]

§ Segment raw vibration signals into fixed-length pieces 
called "tokens.”

§ Use a time-sliding window strategy to create 
sequences of tokens for the Transformer input

§ Shape each data sample into blocks representing 
sequences for tokenized inputs.

§ Apply labels (RUL, class) to each sequence, creating 
the dataset for training

§ Embedding: Perform a linear projection for each 
token, adding a trainable [class] token at the start of 
sequences.

By combining these techniques, you can effectively 
represent your numerical time series data within 
the transformer architecture.



Advantages of Transformers for PHM
§ Global Contextual Awareness: Captures long-range dependencies across entire 

sequences, which is critical for tracking complex degradation patterns in 
equipment.

§ Multi-Modal Compatibility: Easily integrates with multiple data types (e.g., 
vibration, thermal, acoustic) in a single model, enhancing diagnostic capabilities.

§ Scalability: Highly scalable for large datasets and can leverage pre-trained models, 
reducing the need for extensive labeled data.

§ Attention Mechanism: Provides interpretability by highlighting which parts of the 
input sequence are most relevant for predictions, aiding explainability.

§ Adaptation: Efficiently updates with new data, enabling dynamic Remaining Useful 
Life (RUL) predictions and real-time monitoring.
§ Incorporate new data and adjust its predictions dynamically. 
§ Fine-tune with new incoming data without retraining the entire model, allowing the 

system to adjust to changes in the equipment's operational environment or 
degradation patterns.

§ With incremental updates, transformers support real-time fault detection and 
anomaly detection by quickly adapting to changes in the equipment’s behavior.



Disadvantages of Transformers for PHM
§ High Computational Cost

§ Transformers require substantial computational resources, particularly for large datasets and long 
sequences, which can limit real-time applications in resource-constrained environments.

§ Data-Hungry
§ Training transformers effectively requires large amounts of labeled data, which may be difficult to 

obtain in PHM where failures are rare or unpredictable.
§ Complexity in Model Tuning

§ Transformers have many hyperparameters and require careful tuning, which can be challenging 
and time-consuming for optimal performance.

§ Lack of Temporal Bias
§ Unlike traditional time-series models, transformers do not inherently model sequential order, 

requiring additional mechanisms (like positional encoding) to handle time dependencies 
effectively.

§ Limited Explainability
§ Despite attention mechanisms, transformers can be challenging to interpret fully, especially in 

applications where understanding failure mechanisms is essential.
§ Overfitting Risk: 

§ Transformers can overfit on small datasets, making it difficult to generalize in applications where 
labeled data is limited.



Application Architectures
Transformers can be combined in various ways to tackle complex tasks. 
Stacked Transformers:

§ Like building blocks, multiple transformers are stacked on top of each other.
§ The output of one transformer becomes the input of the next.
§ This allows for deeper processing and more complex reasoning.
§ e.g., Some language models use this to achieve better understanding of long texts.

Ensemble Transformers:
§ Multiple transformers are trained independently on the same (or different) data.
§ Their predictions are combined (e.g., by averaging) to produce a final output.
§ This can improve robustness and accuracy by leveraging the diverse strengths of each transformer.
§ E.g., Used in machine translation to get more reliable translations.

Hierarchical Transformers:
§ Transformers are arranged in a tree-like structure.
§ Different transformers specialize in different levels of granularity (e.g., sentence-level, paragraph-level, document-level).
§ This allows for efficient processing of hierarchical information.
§ E.g., Used in document summarization to capture the essence of long texts.

Hybrid Architectures:
§ Transformers are combined with other types of neural networks (e.g., convolutional neural networks, recurrent 

neural networks).
§ This leverages the strengths of different architectures for specific tasks.
§ e.g., Combining transformers with CNNs for image captioning.



Scaling Up: From 
Transformer to Large 

Language Model



An LLM is Essentially a Scaled-up Transformer
To get from the concept of a transformer to a large language model (LLM), the path 
involves:

§ Massive Data: LLMs are trained on truly massive datasets of text and code. This could include 
books, articles, code repositories, and much of the internet. This vast data allows the model to 
learn patterns, grammar, and even some facts about the world.  

§ Huge Model Size: LLMs have a massive number of parameters (think billions or trillions). More 
parameters generally mean a more capable model. 
§ OpenAI's GPT-3 uses 175 billion parameters.
§ OpenAI’s o1-preview uses 2.8 trillion parameters (unconfirmed by OpenAI)

§ LLMs are often trained using a technique called “generative pre-training.” This means they are 
trained to predict the next word in a sequence, which forces them to learn the underlying 
structure of language.  

§ Since LLMs can be computationally intensive, optimizations in serving the model (e.g., 
quantization, distillation) make them more practical for real-world applications by reducing the 
computational load without sacrificing performance.

While pre-training gives LLMs a broad understanding of language, they can be further fine-
tuned for specific tasks like:

§ Writing stories, articles, or summaries.  
§ Converting text between languages.  
§ Providing answers to questions based on given information.
§ Writing code in various programming languages.  



Multimodal LLMs
True to it’s name, a multimodal LLM can process and understand information 
from multiple modalities – like text, images, audio, and video. 

§ By combining information from different modalities, multimodal LLMs can build a richer and 
more nuanced understanding of the world, much like we do.  

§ They can analyze images, understand speech, generate text, and even create images or audio.
§ They can bridge the gap between different forms of communication. Imagine an AI that can 

describe images to someone who is visually impaired, or translate spoken language into sign 
language.  

This enables applications like:
§ More intelligent and capable AI systems. By mimicking human perception, they can understand 

and interact with the world in more meaningful ways.  
§ Image captioning: Generating descriptive captions for images.
§ Visual question answering: Answering questions about images.
§ Text-to-image generation: Creating images from text descriptions.
§ Interactive storytelling: Generating stories that incorporate images and sound.
§ Searching not just with keywords, but with images or sounds. Control devices and applications 

with natural language and gestures.  



Building a Multimodal LLM
§ Images, text, and audio are fundamentally different kinds of data. An LLM trained on text can't inherently 

understand images or sounds.
§ Integration: The key challenge is to find a way to represent these diverse data types in a way that a single 

model can understand and process them together.
§ Need specialized encoders for each modality:

§ Text Encoder: A transformer-based LLM like those we discussed earlier.
§ Image Encoder: Often a Convolutional Neural Network (CNN) or a Vision Transformer (ViT) to extract features 

and create embeddings from images.
§ Audio Encoder: Models like Whisper that can convert audio into a sequence of representations.

Creating a Shared Representation Space
§ The encoders need to translate their respective data types into a common “language” or representation 

space that the model can understand. This often involves mapping the outputs of each encoder into a 
shared embedding space.

§ A multimodal LLM needs a mechanism to fuse or combine the information from different modalities. This 
might involve:

§ Simple Concatenation: Combining the embeddings from different modalities into a single input sequence.
§ Cross-Attention: Allowing the model to attend to information from different modalities, similar to how self-

attention works within a transformer.
§ Multimodal Training: The entire model is then trained on data that includes multiple modalities. For example, it 

might be trained on image-caption pairs, audio recordings with transcripts, or video clips with descriptions.

Multimodal LLMs builds upon the foundation of transformers and LLMs by incorporating specialized 
encoders for different modalities, creating a shared representation space, and training on multimodal 
data. This allows these models to process and generate information from multiple sources, leading to a 
deeper understanding of the world and exciting new applications.



Multimodal Transformer Systems (LLMs) for PHM
PHM relies on various types of data:  

§ Sensor Data: Vibration, temperature, pressure, acoustic emissions, etc.  
§ Inspection Data: Images, videos from visual inspections, X-rays, etc.
§ Maintenance Records: Textual descriptions of repairs, replacements, etc.
§ Operational Logs: Records of usage patterns, environmental conditions, etc.

Multimodal transformers can ingest and fuse these diverse data 
sources, capturing complex relationships that might be missed by 
traditional PHM methods. 



Multimodal Transformer Systems (LLMs) for PHM (cont.)
Enhanced Feature Extraction

§ Automatic Feature Engineering: Transformer can automatically identify relevant features from raw sensor data, reducing the 
need for manual feature engineering.  

§ Cross-Modal Feature Learning: They can learn correlations between different modalities, such as linking patterns in sensor 
data with visual anomalies in inspection images.

Improved Predictive Modeling
§ By combining information from multiple sources, multimodal transformers can create more accurate and robust predictive 

models.
§ They can detect subtle anomalies across different modalities that might signal impending failures, enabling proactive 

maintenance.

“Explainable” PHM
§ Multimodal transformer can potentially provide insights into the underlying causes of failures by analyzing the relationships 

between different data sources.
§ They can generate human-readable explanations of their predictions, increasing trust and transparency in PHM systems.  

Challenges and Considerations
§ Collecting and preparing diverse data for multimodal transformers can be challenging.
§ Training large multimodal models requires significant computational resources.  
§ Integrating domain expertise into the development and deployment of multimodal transformers for PHM is essential.  

Multimodal Transformers have the potential to significantly advance PHM by enabling more comprehensive data 
analysis, improved prediction accuracy, and enhanced explainability. This could lead to more efficient maintenance, 
reduced downtime, and improved safety across various industries.



From LLMs to Retrieval-Augmented Generation (RAG)
The Limitation of LLMs:

§ LLMs are trained on a fixed dataset, so their knowledge is limited to what they learned during training.
§ LLMs can sometimes generate incorrect or nonsensical information, especially when dealing with rare or 

unseen concepts.

The Need for External Knowledge:
§ To overcome these limitations, we need a way to access and integrate external knowledge sources.
§ This is where RAG comes in!

How RAG Works:
§ Retrieve: Given a user query, RAG retrieves relevant information from external knowledge sources (e.g., 

databases, documents).
§ Augment: This retrieved information is used to augment the LLM's input, providing it with the context and 

knowledge it needs to generate a more accurate and informative response.
§ Generate: The LLM then generates a response based on both the user query and the retrieved 

knowledge.
Key Components of RAG:

§ A collection of documents or a database containing relevant information.
§ A retrieval model that can efficiently search the knowledge source and retrieve relevant documents.
§ A large language model that generates the final response.



RAG Pros & Cons
Benefits of RAG:

§ Up-to-date Information: Access to external knowledge sources allows RAG to 
provide information that is more current than the LLM's training data.

§ Reduced Hallucination: Grounding the LLM's response in retrieved knowledge 
helps to reduce the risk of generating incorrect or nonsensical information.

§ Improved Accuracy: RAG systems can achieve higher accuracy on tasks that 
require factual knowledge or specific domain expertise.

Downsides of RAG
§ Complexity: RAG systems have more components than standalone LLMs, making 

them more complex to build and maintain. This includes managing the knowledge 
source, retrieval model, and the LLM itself.

§ Retrieving and processing information from external sources adds computational 
overhead, which can increase latency and cost, especially with large knowledge 
bases.

§ The effectiveness of RAG depends heavily on the quality of the retrieval model. 
Inaccurate or irrelevant retrievals can lead to poor or misleading responses.

§ Keeping the knowledge source up-to-date and ensuring the retrieval model 
remains effective requires ongoing maintenance and monitoring. Although easier 
to maintain RAG than update an LLM



RAG in PHM

Lukens, S., McCabe, L. H., Gen, J., & Ali, A. (2024, November). 
Large Language Model Agents as Prognostics and Health 
Management Copilots. In Annual Conference of the PHM 
Society (Vol. 16, No. 1).

Figure 1. Conceptual illustration of a PHM Copilot as part of a 
comprehensive PHM system.Framework:

§Proposes integrating LLMs as in-the-loop 
agents in PHM workflows.

§The LLM-based PHM Copilot includes data 
processing, failure mode discovery, and 
structured maintenance recommendations 
triggered by PHM alerts.

Case Study:
§ Utilized historical PHM data from GE Vernova 

for validation.
§ Found that integrating RAG significantly 

improved recommendation accuracy and 
relevance by drawing on similar past cases.
§ RAG-enhanced recommendations were more 

likely to capture failure modes and did so in 
fewer steps than the LLM-only approach.

§ SMEs evaluated the LLM agents' outputs, finding 
the observation and failure mode extraction 
agents generally accurate, though complex 
cases required additional SME labeling.

§ The framework demonstrated potential for 
effective troubleshooting, though improvements 
in evaluator accuracy and retrieval diversity 
were noted as areas for future work.

LLMs have value in PHM for data quality 
improvement and supporting prescriptive 
decision-making.



Demos!



Multimodal LLMs “describe this image”



Multimodal LLMs “describe this image”
This diagram represents a Predictive Maintenance (PdM) framework integrated with a Prognostics and Health 
Management (PHM) system, known here as the PHM Copilot. It highlights the data flow and interaction between 
various components involved in monitoring, diagnosing, and recommending maintenance actions for physical assets 
in an industrial facility.

Key Components:
Data Sources:
Historical Case Database: Stores past cases for reference.

•Asset Condition Data: Collects real-time or periodic data on asset health.
•Maintenance Data: Documents maintenance history and procedures.
•Technical Manuals: Provides operational and troubleshooting guidance.

PHM Copilot:
Contains PHM modeling for Fault Detection, Diagnostics, and Prognostics.

•Generates an Alert when potential issues are detected based on the asset's condition.
•Passes information and data to a Recommender system for generating maintenance recommendations.

Recommender (PHM Copilot System):
Utilizes the data and insights from PHM modeling, historical cases, and manuals.

•Provides specific Recommendations with step-by-step actions (Step 1, Step 2, etc.).



Multimodal LLMs “describe this image”
M&D Center (Monitoring & Diagnostics Center):
Houses an Analyst responsible for receiving alerts and recommendations, assessing the situation, and coordinating actions 
with maintenance professionals.

Industrial Facility with Physical Asset:
Maintenance and Repair (M&R) professionals receive tasks and troubleshoot identified faults.
Actions are initiated through a Work Management System and relayed to M&R professionals for execution.

Validation:
The validation component, possibly an AI or system check, ensures that the recommendations meet quality or reliability 
standards before implementation.

Workflow Summary:
1. Data from historical cases, asset conditions, maintenance logs, and technical manuals feed into the PHM Copilot.
2. The PHM Copilot's models detect potential issues, generating an alert.
3. The Recommender processes data to provide actionable recommendations.
4. An analyst in the M&D Center evaluates the alert and recommendations, coordinating with M&R staff to address the fault.
5. Validated recommendations are passed to the Work Management System, triggering maintenance actions at the facility.

This system enhances proactive maintenance by leveraging historical data, real-time monitoring, and guided recommendations, 
aiming to reduce asset downtime and extend equipment life.



Chat With Data



Chat With Docs



Unsupervised Clustering



Where is this going?









GenAI has passed the Peak of Inflated Expectations
By the end of 2024, value will be largely derived from projects based on 
familiar AI techniques, either stand-alone or in combination with GenAI, that 
have standardized processes to aid implementation. Rather than focusing 
solely on GenAI, AI leaders should look to composite AI techniques that 
combine approaches from innovations at all stages of the Hype Cycle.
However, GenAI still has potential to be a transformational technology with 
profound business impacts on content discovery, creation, authenticity and 
regulation, automation of human work, and customer and employee 
experiences. Still, GenAI faces challenges, including ethical and societal 
concerns, limited security best practices and nefarious uses like deep fakes 
and disinformation.

https://www.gartner.com/en/articles/hype-cycle-for-artificial-intelligence

Gartner’s Take



My Take
§LLMs are a tool, like any other

§Very useful for certain applications
§Good to have multiple, interacting agents 
§Don’t get bullied into applying it inappropriately 

§LLM hallucinations are a major issue. The more you know 
about a topic, the weirder the subtle errors seem.
§Transformers are very powerful

§Training data & Compute power represent major challenges
§GPUs are very expensive to rent or buy



Questions


